Abstract-In this paper, a novel generalization of subspace-based blind channel identification methods in cyclic prefix (CP) systems is proposed. For the generalization, a new system parameter called repetition index is introduced whose value is unity for previously reported special cases. By choosing a repetition index larger than unity, the number of received blocks needed for blind identification is significantly reduced compared to all previously reported methods. This feature makes the method more realistic especially in wireless environments where the channel state is usually fast-varying. Given the number of received blocks available, the minimum value of repetition index is derived. Theoretical limit allows the proposed method to perform blind identification using only three received blocks in absence of noise. In practice, the number of received blocks needed to yield a satisfactory bit-error-rate (BER) performance is usually on the order of half the block size. Simulation results not only demonstrate the capability of the algorithm to perform blind identification using fewer received blocks, but also show that in some cases system performance can be improved by choosing a repetition index larger than needed. Simulation of the proposed method over time-varying channels clearly demonstrates the improvement over previously reported methods.Index Terms-Blind identification, cyclic prefix, orthogonal frequency division multiplexing (OFDM), repetition index, single-carrier cyclic prefix (SC-CP), subspace-based methods.
It is well known that redundant filter bank precoders can be used for blind identification as well as equalization of FIR channels. Several algorithms have been proposed in the literature exploiting trailing zeros in the transmitter. In this paper we propose a generalized algorithm of which the previous algorithms are special cases. By carefully choosing system parameters, we can jointly optimize the system performance and computational complexity. Both time domain and frequency domain approaches of channel identification algorithms are proposed. Simulation results show that the proposed algorithm outperforms the previous ones when the parameters are optimally chosen, especially in time-varying channel environments. A new concept of generalized signal richness for vector signals is introduced of which several properties are studied.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.