Observed modifications of ectomycorrhizal (ECM) communities have been connected to the increased N depositions of the 20th century. Because of their narrow niche width, small disturbances of soil conditions can produce greater effects on the fungal species than on their host trees. This study investigated the ECM community in a black spruce ( Picea mariana (Mill.) BSP) stand subjected to long-term additions of 9 and 30 kg N·ha–1·year–1 of ammonium nitrate, representing 3 and 10 times the atmospheric N deposition at the site, respectively. Root tip vitality and ECM presence were detected on samples collected from the organic horizon and ECM were classified into morphotypes according to their morphological and anatomical characters. In the control, 80.6% of the root tips were vital, 76.5% of them showing ECM colonization. Higher root tip vitality and mycorrhization were observed in the treated plots. Forty-one morphotypes were identified, most of them detected at the higher N inputs. Results diverging from the expectations of a reduction in ECM presence and diversity could be related to a higher growth rate of the trees following fertilization. The repeated application of small N doses could have been a better imitation of natural inputs from atmospheric deposition and could have provided more reliable responses of ECM to treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.