Although various population initialization techniques have been employed in evolutionary algorithms (EAs), there lacks a comprehensive survey on this research topic. To fill this gap and attract more attentions from EA researchers to this crucial yet less explored area, we conduct a systematic review of the existing population initialization techniques. Specifically, we categorize initialization techniques from three exclusive perspectives, i.e., randomness, compositionality and generality. Characteristics of the techniques belonging to each category are carefully analysed to further lead to several sub-categories. We also discuss several open issues related to this research topic, which demands further in-depth investigations.
Co-evolution (CC) is an explicit means of problem decomposition in multi-population evolutionary algorithms for solving large-scale optimization problems. For CC, subpopulations representing subcomponents of a large-scale optimization problem co-evolve, and are likely to have different contributions to the improvement of the overall objective value of the original problem. Hence it makes sense that more computational resources should be allocated to the subpopulations with greater contributions. In this paper, we study how to allocate computational resources in this context and subsequently propose a new CC framework named CCFR to ef�ciently allocate computational resources among the subpopulations according to their contributions to the improvement of the best objective value. Our experimental results and analysis suggest that CCFR can make ef�cient use of computational resources and is a highly competitive CC framework for solving large-scale optimization problems.
Abstract-Several population initialization methods for evolutionary algorithms (EAs) have been proposed previously. This paper categorizes the most well-known initialization methods and studies the effect of them on large scale global optimization problems. Experimental results indicate that the optimization of large scale problems using EAs is more sensitive to the initial population than optimizing lower dimensional problems. Statistical analysis of results show that basic random number generators, which are the most commonly used method for population initialization in EAs, lead to the inferior performance. Furthermore, our study shows, regardless of the size of the initial population, choosing a proper initialization method is vital for solving large scale problems.
Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document. When citing, please reference the published version. Take down policy While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been uploaded in error or has been deemed to be commercially or otherwise sensitive.
Abstract-This work provides an in-depth investigation of the effects of population initialization on Differential Evolution (DE) for dealing with large scale optimization problems. Firstly, we conduct a statistical parameter sensitive analysis to study the effects of DE's control parameters on its performance of solving large scale problems. This study reveals the optimal parameter configurations which can lead to the statistically superior performance over the CEC-2013 large-scale test problems. Thus identified optimal parameter configurations interestingly favour much larger population sizes while agreeing with the other parameter settings compared to the most commonly employed parameter configuration. Based on one of the identified optimal configurations and the most commonly used configuration, which only differ in the population size, we investigate the influence of various population initialization techniques on DE's performance. This study indicates that initialization plays a more crucial role in DE with a smaller population size. However, this observation might be the result of insufficient convergence due to the use of a large population size under the limited computational budget, which deserve more investigations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.