Programmable linear optical interferometers are important for classical and quantum information technologies, as well as for building hardware-accelerated artificial neural networks. Recent results showed the possibility of constructing optical interferometers that could implement arbitrary transformations of input fields even in the case of high manufacturing errors. The building of detailed models of such devices drastically increases the efficiency of their practical use. The integral design of interferometers complicates its reconstruction since the internal elements are hard to address. This problem can be approached by using optimization algorithms [Opt. Express 29, 38429 (2021)10.1364/OE.432481]. In this paper, we present what we believe to be a novel efficient algorithm based on linear algebra only, which does not use computationally expensive optimization procedures. We show that this approach makes it possible to perform fast and accurate characterization of high-dimensional programmable integrated interferometers. Moreover, the method provides access to the physical characteristics of individual interferometer layers.
Programmable linear optical interferometers are important for classical and quantum information technologies, as well as for building hardware-accelerated artificial neural networks. Recent results showed the possibility of constructing optical interferometers that could implement arbitrary transformations of input fields even in the case of high manufacturing errors. The building of detailed models of such devices drastically increases the efficiency of their practical use. The integral design of interferometers complicates its reconstruction since the internal elements are hard to address. This problem can be approached by using optimization algorithms [Opt. Express, 29, 38429 (2021)]. In this paper, we present a novel efficient algorithm based on linear algebra only, which does not use computationally expensive optimization procedures. We show that this approach makes it possible to perform fast and accurate characterization of high-dimensional programmable integrated interferometers. Moreover, the method provides access to the physical characteristics of individual interferometer layers
Programmable linear optical interferometers are important for classical and quantum information technologies, as well as for building hardware-accelerated artificial neural networks. Recent results showed the possibility of constructing optical interferometers that could implement arbitrary transformations of input fields even in the case of high manufacturing errors. The building of detailed models of such devices drastically increases the efficiency of their practical use. The integral design of interferometers complicates its reconstruction since the internal elements are hard to address. This problem can be approached by using optimization algorithms [Opt. Express, 29, 38429 (2021)]. In this paper, we present a novel efficient algorithm based on linear algebra only, which does not use computationally expensive optimization procedures. We show that this approach makes it possible to perform fast and accurate characterization of high-dimensional programmable integrated interferometers. Moreover, the method provides access to the physical characteristics of individual interferometer layers
According to the Rayleigh criterion, it is impossible to resolve two statistically independent point sources separated by a distance below the width of the point spread function (PSF). Almost twenty years ago it was shown that the distance between two point sources can be statistically estimated with an accuracy better than the PSF width. However, the estimation error increases with decreasing distance. This effect was informally named Rayleigh's curse. Next, it was demonstrated that PSF shaping allows breaking the curse provided that all other source parameters except for the distance, are known a priori. In this work, we propose a new imaging technique based on the target Beam moduLation and the Examination of Shot Statistics (BLESS). Using the Fisher information approach, we show that the technique can break Rayleigh's curse even for unbalanced point sources with unknown centroid and intensity ratio.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.