IEEE 802.11ax-2019 will replace both IEEE 802.11n-2009 and IEEE 802.11ac-2013 as the next high-throughput Wireless Local Area Network (WLAN) amendment. In this paper, we review the expected future WLAN scenarios and use-cases that justify the push for a new PHY/MAC IEEE 802.11 amendment. After that, we overview a set of new technical features that may be included in the IEEE 802.11ax-2019 amendment and describe both their advantages and drawbacks. Finally, we discuss some of the network-level functionalities that are required to fully improve the user experience in next-generation WLANs and note their relation with other on-going IEEE 802.11 amendments.
Machine-to-Machine (M2M) communications are positioned to be one of the fastest growing technology segments in the next decade. Sensor and actuator networks connect communication machines and devices so that they automatically transmit information, serving the growing demand for environmental data acquisition. The IEEE 802.11ah Task Group (TGah) is working on a new standard to address the particular requirements of M2M networks: a large number of power-constrained stations, a long transmission range, small and infrequent data messages, low data rates and a non-critical delay. This paper explores the key features of this new standard, especially those related to the reduction of energy consumption in the medium access control layer. Given these requirements, a performance assessment of IEEE 802.11ah in four common M2M scenarios such as agriculture monitoring, smart metering, industrial automation and animal monitoring is presented. networks because of the growing but still reduced number of devices and light traffic requirements. Simultaneously, the 3rd Generation Partnership Project (3GPP) is working towards supporting M2M applications on 4G broadband mobile networks, such as UMTS and LTE, with the goal of natively embedding M2M communications in the upcoming 5G systems.
Terahertz (THz) communication is widely considered as a key enabler for future 6G wireless systems. However, THz links are subject to high propagation losses and intersymbol interference due to the frequency selectivity of the channel. Massive multiple-input multiple-output (MIMO) along with orthogonal frequency division multiplexing (OFDM) can be used to deal with these problems. Nevertheless, when the propagation delay across the base station (BS) antenna array exceeds the symbol period, the spatial response of the BS array varies over the OFDM subcarriers. This phenomenon, known as beam squint, renders narrowband combining approaches ineffective. Additionally, channel estimation becomes challenging in the absence of combining gain during the training stage. In this work, we address the channel estimation and hybrid combining problems in wideband THz massive MIMO with uniform planar arrays. Specifically, we first introduce a low-complexity beam squint mitigation scheme based on true-time-delay. Next, we propose a novel variant of the popular orthogonal matching pursuit (OMP) algorithm to accurately estimate the channel with low training overhead. Our channel estimation and hybrid combining schemes are analyzed both theoretically and numerically. Moreover, the proposed schemes are extended to the multiantenna user case. Simulation results are provided showcasing the performance gains offered by our design compared to standard narrowband combining and OMP-based channel estimation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.