Inverted repeats are common DNA elements, but they rarely overlap with protein-coding sequences due to the ensuing conflict with the structure and function of the encoded protein. We discovered numerous perfect inverted repeats of considerable length (up to 284 bp) embedded within the protein-coding genes in mitochondrial genomes of four Nematomorpha species. Strikingly, both arms of the inverted repeats encode conserved regions of the amino acid sequence. We confirmed enzymatic activity of the respiratory complex I encoded by inverted repeat-containing genes. The nucleotide composition of inverted repeats suggests strong selection at the amino acid level in these regions. We conclude that the inverted repeat-containing genes are transcribed and translated into functional proteins. The survey of available mitochondrial genomes reveals that several other organisms possess similar albeit shorter embedded repeats. Mitochondrial genomes of Nematomorpha demonstrate an extraordinary evolutionary compromise where protein function and stringent secondary structure elements within the coding regions are preserved simultaneously.
Endangered species of hosts are coupled with endangered species of parasites, which share the risk of co-extinction. Conservation efforts sometimes include breeding of rare species in captivity. Data on parasites of captive populations of endangered species is scarce and the ability of small numbers of captive host individuals to support the biodiversity of native parasites is limited. Examination of ectosymbionts of the critically endangered Philippine eagles and the endangered Mindanao Hawk-Eagle kept at the Philippine Eagle Center, Philippines, revealed three feather mite species despite regular treatment with insecticide powder. No other ectosymbiont taxa were detected. Studies in morphology and molecular phylogeny of these feather mites based on mitochondrial and nuclear DNA markers indicate that species found were typical for Accipitridae. Three new pterolichoid feather mite species (Acari: Pterolichoidea) were described from two species of eagles (Accipitriformes: Accipitridae) endemic to the Philippines: Hieracolichus philippinensis sp. n. (Gabuciniidae) and Pseudalloptinus pithecophagae sp. n. (Pterolichidae) from the Great Philippine Eagle Pithecophaga jefferyi Ogilvie-Grant, 1896, and Pseudogabucinia nisaeti sp. n. (Kramerellidae) from the Mindanao Hawk-Eagle Nisaetus pinskeri Gould, 1863. The presence of H. philippinensis on P. jefferyi supports the recent finding that the Great Philippine Eagle belongs to the lineage of serpent eagles (Circaetinae) rather than to the Harpy and other eagles.
The tropical rainforests of Sundaland are a global biodiversity hotspot increasingly threatened by human activities. While parasitic insects are an important component of the ecosystem, their diversity and parasite-host relations are poorly understood in the tropics. We investigated parasites of passerine birds, the chewing lice of the speciose genus Myrsidea Waterston, 1915 (Phthiraptera: Menoponidae) in a natural rainforest community of Malaysian Borneo. Based on morphology, we registered 10 species of lice from 14 bird species of six different host families. This indicated a high degree of host specificity and that the complexity of the system could be underestimated with the potential for cryptic lineages/species to be present. We tested the species boundaries by combining morphological, genetic and host speciation diversity. The phylogenetic relationships of lice were investigated by analyzing the partial mitochondrial cytochrome oxidase I ( COI ) and the nuclear elongation factor alpha ( EF-1α ) genes sequences of the species. This revealed a monophyletic group of Myrsidea lineages from seven hosts of the avian family Pycnonotidae, one host of Timaliidae and one host of Pellorneidae. However, species delimitation methods supported the species boundaries hypothesized by morphological studies and confirmed that four species of Myrsidea are not single host specific. Cophylogenetic analysis by both distance-based test ParaFit and event-based method Jane confirmed overall congruence between the phylogenies of Myrsidea and their hosts. In total we recorded three cospeciation events for 14 host-parasite associations. However only one host-parasite link ( M. carmenae and their hosts Terpsiphone affinis and Hypothymis azurea) was significant after the multiple testing correction in ParaFit. Four new species are described: Myrsidea carmenae sp.n. ex Hypothymis azurea and Terpsiphone affinis , Myrsidea franciscae sp.n. ex Rhipidura javanica , Myrsidea ramoni sp.n. ex Copsychus malabaricus stricklandii , and Myrsidea victoriae sp.n. ex. Turdinus sepiarius .
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.