Microscopy images must be acquired at the optimal focal plane for the objects of interest in a scene. Although manual focusing is a standard task for a trained observer, automatic systems often fail to properly find the focal plane under different microscope imaging modalities such as bright field microscopy or phase contrast microscopy. This article assesses several autofocus algorithms applied in the study of fluorescence‐labeled tuberculosis bacteria. The goal of this work was to find the optimal algorithm in order to build an automatic real‐time system for diagnosing sputum smear samples, where both accuracy and computational time are important. We analyzed 13 focusing methods, ranging from well‐known algorithms to the most recently proposed functions. We took into consideration criteria that are inherent to the autofocus function, such as accuracy, computational cost, and robustness to noise and to illumination changes. We also analyzed the additional benefit provided by preprocessing techniques based on morphological operators and image projection profiling. © 2012 International Society for Advancement of Cytometry
In this paper we present the spatial distribution of ionized hydrogen gas, Hα, in a set of 52 bright barred Shapley-Ames spiral galaxies. In summary we were able to detect Hα line emission from distinct regions in the galaxies as from compact nuclei, from circumnuclear rings, from the bar, from ends of bars, from inner rings, from spiral arms, from outer rings and from places or structures perpendicular either to the bar or to the spiral arms.
Pollen identification is required in different scenarios such as prevention of allergic reactions, climate analysis or apiculture. However, it is a time-consuming task since experts are required to recognize each pollen grain through the microscope. In this study, we performed an exhaustive assessment on the utility of texture analysis for automated characterisation of pollen samples. A database composed of 1800 brightfield microscopy images of pollen grains from 15 different taxa was used for this purpose. A pattern recognition-based methodology was adopted to perform pollen classification. Four different methods were evaluated for texture feature extraction from the pollen image: Haralick's gray-level co-occurrence matrices (GLCM), log-Gabor filters (LGF), local binary patterns (LBP) and discrete Tchebichef moments (DTM). Fisher's discriminant analysis and k-nearest neighbour were subsequently applied to perform dimensionality reduction and multivariate classification, respectively. Our results reveal that LGF and DTM, which are based on the spectral properties of the image, outperformed GLCM and LBP in the proposed classification problem. Furthermore, we found that the combination of all the texture features resulted in the highest performance, yielding an accuracy of 95%. Therefore, thorough texture characterisation could be considered in further implementations of automatic pollen recognition systems based on image processing techniques.
Abstract. An essential and indispensable component of automated microscopy framework is the automatic focusing system, which determines the in-focus position of a given field of view by searching the maximum value of a focusing function over a range of z-axis positions. The focus function and its computation time are crucial to the accuracy and efficiency of the system. Sixteen focusing algorithms were analyzed for histological and histopathological images. In terms of accuracy, results have shown an overall high performance by most of the methods. However, we included in the evaluation study other criteria such as computational cost and focusing curve shape which are crucial for real-time applications and were used to highlight the best practices.
The efficient representation of local differential structure at various resolutions has been a matter of great interest for adaptive image processing and computer vision tasks. In this paper, we derive a multiscale model to represent natural images based on the scale-space representation: a model that has an inspiration in the human visual system. We first derive the one-dimensional case and then extend the results to two and three dimensions. The operators obtained for analysis and synthesis stages are derivatives of the Gaussian smoothing kernel, so that, for the two-dimensional case, we can represent them either in a rotated coordinate system or in terms of directional derivatives. The method to perform the rotation is efficient because it is implemented by means of the application of the so-called generalized binomial filters. Such a family of discrete sequences fulfills a number of properties that allows estimating the local orientation for several image structures. We also define the discrete counterpart in which the coordinate normalization of the continuous case is approximated as a subsampling of the discrete domain.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.