Astrocytes play a key role in the pathogenesis of ammonia-induced neurotoxicity and hepatic encephalopathy. As shown here, ammonia induces protein tyrosine nitration in cultured rat astrocytes, which is sensitive to the N-methyl-D-aspartate (NMDA) receptor antagonist MK-801. A similar pattern of nitrated proteins is produced by NMDA. Ammonia-induced tyrosine nitration depends on a rise in [Ca2+]i, IkB degradation, and NO synthase (iNOS) induction, which are prevented by MK-801 and the intracellular Ca2+ chelator 1,2-bis(o-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid (BAPTA-AM). Moreover, the increase in tyrosine nitration is blunted by L-NMMA, 1400W, uric acid, Cu, Zn-superoxide dismutase/catalase treatment, and methionine-sulfoximine, which indicate the involvement of reactive nitrogen intermediates and intracellular glutamine accumulation. Such reactive nitrogen intermediates additionally mediate ammonia-induced phosphorylation of the MAP-kinases Erk-1/Erk-2 and p38MAPK. Among the proteins, which are tyrosine -nitrated by ammonia, glyceraldehyde-3-phosphate dehydrogenase, the peripheral-type benzodiazepine receptor, Erk-1, and glutamine synthetase are identified. Ammonia-induced nitration of glutamine synthetase is associated with a loss of enzymatic activity. Astroglial protein tyrosine nitration is found in brains from rats after acute ammonia-intoxication or after portacaval anastomosis, indicating the in vivo relevance of the present findings. The production of reactive nitrogen intermediates and protein tyrosine nitration may alter astrocyte function and contribute to ammonia neurotoxicity.
Sinusoidal endothelial cells (SEC) constitute a permeable barrier between hepatocytes and blood. SEC are exposed to high concentrations of bile salts from the enterohepatic circulation. Whether SEC are responsive to bile salts is unknown. TGR5, a G-protein-coupled bile acid receptor, which triggers cAMP formation, has been discovered recently in macrophages. In this study, rat TGR5 was cloned and antibodies directed against the C-terminus of rat TGR5 were developed, which detected TGR5 as a glycoprotein in transfected HepG2-cells. B ile salts are required for cholesterol excretion and lipid absorption. 1 However, high concentrations of lipophilic bile salts have toxic effects. Bile salts alter membrane fluidity 2 and can act pro-or anti-apoptotic. [3][4][5][6] Many liver diseases are aggravated by the cholestatic potential of lipophilic bile salts. Therefore, several mechanisms exist to maintain bile salt homeostasis. These include the coordinated expression and action of bile salt transporters at the sinusoidal and canalicular membrane of liver parenchymal cells, 7 alternative pathways for bile salt synthesis and metabolism, 8,9 and the involvement of extrahepatic tissues (such as the gut and the kidneys) in bile salt excretion. [10][11][12] These mechanisms are closely regulated by nuclear receptors sensitive for bile salts, which control the expression of transporter proteins and enzymes. They comprise the farnesoid X receptor, 13-15 the pregnane X receptor, 16,17 and the vitamin D receptor. 18 Recently, a G-protein-coupled plasma membrane receptor responsive to bile salts has been discovered by highthroughput screening. This receptor, named TGR5, 19 M-BAR, or BG37, 20 stimulates adenylate cyclase on activation and increases the production of cyclic adenosine monophosphate (cAMP). Thereby, bile salts not only may be involved in the regulation of transcription but also may influence rapid, cAMP-dependent mechanisms in TGR5 expressing cells. So far, TGR5 expression has been demonstrated in enteroendocrine cells, 21 where bile salts stimulate the secretion of glucagon-like peptide-1 via TGR5 and in alveolar macrophages, 19 which secrete smaller amounts of cytokines in response to endotoxin, when bile salts are present. Recently, bile salts were shown to influence energy consumption in brown adipose tissue
Glutamine synthetase plays a major role in ammonia detoxification, interorgan nitrogen flux, acid-base homeostasis, and cell signaling. We report on two unrelated newborns who had congenital human glutamine synthetase deficiency with severe brain malformations resulting in multiorgan failure and neonatal death. Glutamine was largely absent from their serum, urine, and cerebrospinal fluid. Each infant had a homozygous mutation in the glutamine synthetase gene (R324C and R341C). Studies that used immortalized lymphocytes expressing R324C glutamine synthetase (R324C-GS) and COS7 cells expressing R341C-GS suggest that these mutations are associated with reduced glutamine synthetase activity.
TGR5 (Gpbar-1) is a membrane-bound bile acid receptor in the gastrointestinal tract and immune cells with pleiotropic actions. As shown in the present study, TGR5 is also expressed in astrocytes and neurons. Here, TGR5 may act as a neurosteroid receptor, which is activated by nanomolar concentrations of 5β-pregnan-3α-ol-20-one and micromolar concentrations of 5β-pregnan-3α-17α-21-triol-20-one and 5α-pregnan-3α-ol-20-one (allopregnanolone). TGR5 stimulation in astrocytes and neurons is coupled to adenylate cyclase activation, elevation of intracellular Ca(2+) and the generation of reactive oxygen species. In cultured rat astrocytes, TGR5 mRNA is downregulated in the presence of neurosteroids and ammonia already at concentrations of 0.5 mmol L(-1). Furthermore, TGR5 protein levels are significantly reduced in isolated rat astrocytes after incubation with ammonia. A marked downregulation of TGR5 mRNA is also found in cerebral cortex from cirrhotic patients dying with hepatic encephalopathy (HE) when compared with brains from noncirrhotic control subjects. It is concluded that TGR5 is a novel neurosteroid receptor in brain with implications for the pathogenesis of HE.
Oxidative/nitrosative stress and a low-grade cerebral edema as key events in the pathogenesis of ammonia toxicity and hepatic encephalopathy may offer potential new strategies for treatment. Ammonia-induced oxidation of RNA and proteins may impair postsynaptic protein synthesis, which is critically involved in learning and memory consolidation. RNA oxidation offers a novel explanation for multiple disturbances of neurotransmitter systems and gene expression and the cognitive deficits observed in hepatic encephalopathy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.