In clinical endpoint trials, the association between a baseline covariate and the risk of an endpoint is often measured by the hazard ratio as calculated by a Cox regression model, and illustrated by Kaplan-Meier curves comparing cohorts defined by levels of the covariate. The Cox regression model is easily extended to the case of time-varying covariates; however, there is no clear approach for similarly extending the standard KaplanMeier estimator. Various ad hoc procedures that have been used in the medical literature are seriously flawed. This article discusses an extended Kaplan-Meier estimator that can be used with time-varying covariates and illustrates this method using data from a long-term clinical trial.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.