BackgroundHepatitis C Virus (HCV) infections are a major cause for liver diseases. A large proportion of these infections remain hidden to care due to its mostly asymptomatic nature. Population-based screening and screening targeted on behavioural risk groups had not proven to be effective in revealing these hidden infections. Therefore, more practically applicable approaches to target screenings are necessary. Geographic Information Systems (GIS) and spatial epidemiological methods may provide a more feasible basis for screening interventions through the identification of hotspots as well as demographic and socio-economic determinants.MethodsAnalysed data included all HCV tests (n = 23,800) performed in the southern area of the Netherlands between 2002–2008. HCV positivity was defined as a positive immunoblot or polymerase chain reaction test. Population data were matched to the geocoded HCV test data. The spatial scan statistic was applied to detect areas with elevated HCV risk. We applied global regression models to determine associations between population-based determinants and HCV risk. Geographically weighted Poisson regression models were then constructed to determine local differences of the association between HCV risk and population-based determinants.ResultsHCV prevalence varied geographically and clustered in urban areas. The main population at risk were middle-aged males, non-western immigrants and divorced persons. Socio-economic determinants consisted of one-person households, persons with low income and mean property value. However, the association between HCV risk and demographic as well as socio-economic determinants displayed strong regional and intra-urban differences.DiscussionThe detection of local hotspots in our study may serve as a basis for prioritization of areas for future targeted interventions. Demographic and socio-economic determinants associated with HCV risk show regional differences underlining that a one-size-fits-all approach even within small geographic areas may not be appropriate. Future screening interventions need to consider the spatially varying association between HCV risk and associated demographic and socio-economic determinants.
BackgroundThe provision of general practitioners (GPs) in Germany still relies mainly on the ratio of inhabitants to GPs at relatively large scales and barely accounts for an increased prevalence of chronic diseases among the elderly and socially underprivileged populations. Type 2 Diabetes Mellitus (T2DM) is one of the major cost-intensive diseases with high rates of potentially preventable complications. Provision of healthcare and access to preventive measures is necessary to reduce the burden of T2DM. However, current studies on the spatial variation of T2DM in Germany are mostly based on survey data, which do not only underestimate the true prevalence of T2DM, but are also only available on large spatial scales. The aim of this study is therefore to analyse the spatial distribution of T2DM at fine geographic scales and to assess location-specific risk factors based on data of the AOK health insurance.MethodsTo display the spatial heterogeneity of T2DM, a bivariate, adaptive kernel density estimation (KDE) was applied. The spatial scan statistic (SaTScan) was used to detect areas of high risk. Global and local spatial regression models were then constructed to analyze socio-demographic risk factors of T2DM.ResultsT2DM is especially concentrated in rural areas surrounding Berlin. The risk factors for T2DM consist of proportions of 65–79 year olds, 80 + year olds, unemployment rate among the 55–65 year olds, proportion of employees covered by mandatory social security insurance, mean income tax, and proportion of non-married couples. However, the strength of the association between T2DM and the examined socio-demographic variables displayed strong regional variations.ConclusionThe prevalence of T2DM varies at the very local level. Analyzing point data on T2DM of northeastern Germany’s largest health insurance provider thus allows very detailed, location-specific knowledge about increased medical needs. Risk factors associated with T2DM depend largely on the place of residence of the respective person. Future allocation of GPs and current prevention strategies should therefore reflect the location-specific higher healthcare demand among the elderly and socially underprivileged populations.
We developed a syndromic surveillance (SyS) concept using emergency dispatch, ambulance and emergency-department data from different European countries. Based on an inventory of sub-national emergency data availability in 12 countries, we propose framework definitions for specific syndromes and a SyS system design. We tested the concept by retrospectively applying cumulative sum and spatio-temporal cluster analyses for the detection of local gastrointestinal outbreaks in four countries and comparing the results with notifiable disease reporting. Routine emergency data was available daily and electronically in 11 regions, following a common structure. We identified two gastrointestinal outbreaks in two countries; one was confirmed as a norovirus outbreak. We detected 1/147 notified outbreaks. Emergency-care data-based SyS can supplement local surveillance with near real-time information on gastrointestinal patients, especially in special circumstances, e.g. foreign tourists. It most likely cannot detect the majority of local gastrointestinal outbreaks with few, mild or dispersed cases.
BackgroundHypertension is one of the most frequently diagnosed chronic conditions in Germany. Targeted prevention strategies and allocation of general practitioners where they are needed most are necessary to prevent severe complications arising from high blood pressure. However, data on chronic diseases in Germany are mostly available through survey data, which do not only underestimate the actual prevalence but are also only available on coarse spatial scales. The discussion of including area deprivation for planning of healthcare is still relatively young in Germany, although previous studies have shown that area deprivation is associated with adverse health outcomes, irrespective of individual characteristics. The aim of this study is therefore to analyze the spatial distribution of hypertension at very fine geographic scales and to assess location-specific associations between hypertension, socio-demographic population characteristics and area deprivation based on health insurance claims of the AOK Nordost.MethodsTo visualize the spatial distribution of hypertension prevalence at very fine geographic scales, we used the conditional autoregressive Besag–York–Mollié (BYM) model. Geographically weighted regression modelling (GWR) was applied to analyze the location-specific association of hypertension to area deprivation and further socio-demographic population characteristics.ResultsThe sex- and age-adjusted prevalence of hypertension was 33.1% in 2012 and varied widely across northeastern Germany. The main risk factors for hypertension were proportions of insurants aged 45–64, 65 and older, area deprivation and proportion of persons commuting to work outside their residential municipality. The GWR model revealed important regional variations in the strength of the examined associations.ConclusionArea deprivation has only a significant and therefore direct influence in large parts of Mecklenburg-West Pomerania. However, the spatially varying strength of the association between demographic variables and hypertension indicates that there also exists an indirect effect of area deprivation on the prevalence of hypertension. It can therefore be expected that persons ageing in deprived areas will be at greater risk of hypertension, irrespective of their individual characteristics. The future planning and allocation of primary healthcare in northeastern Germany would therefore greatly benefit from considering the effect of area deprivation.
Infectious disease surveillance, timely detection and early warning of outbreaks present a complex challenge to health authorities in India. Approaches based on the use of unexplored data sources, like emergency medical services (EMS) data, can contribute to the further advancement of public health surveillance capacities in India and support and strengthen the Integrated Disease Surveillance Programme (IDSP) strategy. This research followed a mixed method approach including a series of semi-structured interviews and fever data analysis of the EMS operating dispatch system in Andra Pradesh, India. In this paper, we explore whether routinely collected EMS health data can improve sustainable infectious disease surveillance and early warning capacity. The result highlights the need for improved surveillance systems for early warning of infectious diseases in India. The data availability at the EMS dispatch centre includes patient data and spatial information and can be used for near real-time analysis. Routine data relevant for health surveillance can be extracted to provide timely health information that supplements and enhances more traditional surveillance mechanisms and thus provides a cost-efficient, near real-time early warning system for the operating states. The designed intervention is sustainable and can improve infectious disease surveillance to potentially help the government officials to appropriately prioritize timely interventions to prevent infectious disease spread.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.