The tremendous number of sensors and smart objects being deployed in the Internet of Things pose the potential for IT systems to detect and react to live-situations. For using this hidden potential, Complex Event Processing (CEP) systems offer means to efficiently detect event patterns (complex events) in the sensor streams and therefore help in realizing a "distributed intelligence" in the Internet of Things. With the increasing number of data sources and the increasing volume at which data is produced, parallelization of event detection is crucial to limit the time events need to be buffered before they actually can be processed. In this article, we propose a pattern-sensitive partitioning model for data streams that is capable of achieving a high degree of parallelism in detecting event patterns which formerly could only be consistently detected in a sequential manner or at a low parallelization degree. Moreover, we propose methods to dynamically adapt the parallelization degree to limit the buffering imposed on event detection in the presence of dynamic changes to the workload. Extensive evaluations of the system behavior show that the proposed partitioning model allows for a high degree of parallelism and that the proposed adaptation methods are able to meet a buffering limit for event detection under high and dynamic workloads.
The domains of complex event processing (CEP) and business process management (BPM) have different origins but for many aspects draw on similar concepts. While specific combinations of BPM and CEP have attracted research attention, resulting in solutions to specific problems, we attempt to take a broad view at the opportunities and challenges involved. We first illustrate these by a detailed example from the logistics domain. We then propose a mapping of this area into four quadrants -two quadrants drawing from CEP to create or extend process models and two quadrants starting $ This paper is an outcome of discussions and collaborations that were initiated at the Dagstuhl seminar 16341 on "Integrating Process-Oriented and Event-Based Systems" from a process model to address how it can guide CEP. Existing literature is reviewed and specific challenges and opportunities are indicated for each of these quadrants. Based on this mapping, we identify challenges and opportunities that recur across quadrants and can be considered as the core issues of this combination. We suggest that addressing these issues in a generic manner would form a sound basis for future applications and advance this area significantly.
Reliability is of critical importance to many applications involving distributed event processing systems. Especially the use of stateful operators makes it challenging to provide efficient recovery from failures and to ensure consistent event streams. Even during failure-free execution, state-of-the-art methods for achieving reliability incur significant overhead at run-time concerning computational resources, event traffic, and event detection time. This paper proposes a novel method for rollback-recovery that allows for recovery from multiple simultaneous operator failures, but eliminates the need for persistent checkpoints. Thereby, the operator state is preserved in savepoints at points in time when its execution solely depends on the state of incoming event streams which are reproducible by predecessor operators. We propose an expressive event processing model to determine savepoints and algorithms for their coordination in a distributed operator network. Evaluations show that very low overhead at failure-free execution in comparison to other approaches is achieved.
No abstract
The educational impact of visualization depends not only on how well students learn when they use it, but also on how widely it is used by instructors. Instructors believe that visualization helps students learn. The integration of visualization techniques in classroom instruction, however, has fallen far short of its potential. This paper considers this disconnect, identifying its cause in a failure to understand the needs of a key member in the hierarchy of stakeholders, namely the instructor. We describe these needs and offer guidelines for both the effective deployment of visualizations and the evaluation of instructor satisfaction. We then consider different forms of evaluation and the impact of student learning styles on learner outcomes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.