Conventional commercial aircraft fuselages use all-aluminium semi-monocoque structures where the skin carries the external loads, the internal fuselage pressurisation and is strengthen using frames and stringers. Environmental and economic issues force aircraft designers to minimise weight and costs to keep air transport competitive and safe. But as metal designs have reached a high degree of perfection, extraordinary weight and cost savings are unlikely in the future. Carbon composite materials combined with lattice structures and the use of topology optimisation have the potential to offer such weight reductions. The EU FP7 project Advanced Lattice Structures for Composite Airframes (ALaSCA) was started to investigate this. This article present some of this research which has now led to the development of a new airframe concept which consists of: a load carrying inner skin; transverse frames; CFRP-metal hybrid stiffeners helically arranged in a grid configuration; insulating foam and an additional aerodynamic outer skin.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.