We consider the time evolution of quantum states by many-body Schrödinger dynamics and study the rate of convergence of their reduced density matrices in the mean field limit. If the prepared state at initial time is of coherent or factorized type and the number of particles n is large enough then it is known that 1/n is the correct rate of convergence at any time. We show in the simple case of bounded pair potentials that the previous rate of convergence holds in more general situations with possibly correlated prepared states. In particular, it turns out that the coherent structure at initial time is unessential and the important fact is rather the speed of convergence of all reduced density matrices of the prepared states. We illustrate our result with several numerical simulations and examples of multi-partite entangled quantum states borrowed from quantum information.Mathematics subject classification: 81S30, 81S05, 81T10, 35Q55, 81P40
We consider a class of many-body Hamiltonians composed of a free (kinetic) part and a multi-particle (potential) interaction with a compactness assumption on the latter part. We investigate the mean field limit of such quantum systems following the Wigner measures approach. We prove the propagation of these measures along the flow of a nonlinear (Hartree) field equation. This enhances and complements some previous results of the same type shown in [4,6,11].
We consider a class of many-body Hamiltonians composed of a free (kinetic) part and a multi-particle (potential) interaction with a compactness assumption on the latter part. We investigate the mean field limit of such quantum systems following the Wigner measures approach. We prove the propagation of these measures along the flow of a nonlinear (Hartree) field equation. This enhances and complements some previous results of the same type shown in [4,6,11].
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.