Image Databases (IDBs) are a kind of Spatial Databases where a large number of images are stored and queried. In this chapter, techniques for indexing an IDB for efficiently processing several kinds of queries, like retrieval based on features, content, structure, processing of joins, and queries by example are reviewed. The main indexing techniques used in IDBs are either members of the R-tree family (data driven structures), or members of the quadtree family (space driven structures). Although, research on IDB indexing counts several years, there are still significant research challenges, which are also discussed in this chapter. IDBs and their indexing structures bring together two different disciplines (databases and image processing) and interdisciplinary research efforts are required. Moreover, dealing with the semantic gap (successful integrated retrieval based on low-level features and high-level semantic features) and querying between images and other kinds of spatial data are also significant future research directions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.