BackgroundRNA visualization software tools have traditionally presented a static visualization of RNA molecules with limited ability for users to interact with the resulting image once it is complete. Only a few tools allowed for dynamic structures. One such tool is jViz.RNA. Currently, jViz.RNA employs a unique method for the creation of the RNA molecule layout by mapping the RNA nucleotides into vertexes in a graph, which we call the detailed graph, and then utilizes a Newtonian mechanics inspired system of forces to calculate a layout for the RNA molecule. The work presented here focuses on improvements to jViz.RNA that allow the drawing of RNA secondary structures according to common drawing conventions, as well as dramatic run-time performance improvements. This is done first by presenting an alternative method for mapping the RNA molecule into a graph, which we call the compressed graph, and then employing advanced numerical integration methods for the compressed graph representation.ResultsComparing the compressed graph and detailed graph implementations, we find that the compressed graph produces results more consistent with RNA drawing conventions. However, we also find that employing the compressed graph method requires a more sophisticated initial layout to produce visualizations that would require minimal user interference. Comparing the two numerical integration methods demonstrates the higher stability of the Backward Euler method, and its resulting ability to handle much larger time steps, a high priority feature for any software which entails user interaction.ConclusionThe work in this manuscript presents the preferred use of compressed graphs to detailed ones, as well as the advantages of employing the Backward Euler method over the Forward Euler method. These improvements produce more stable as well as visually aesthetic representations of the RNA secondary structures. The results presented demonstrate that both the compressed graph representation, as well as the Backward Euler integrator, greatly enhance the run-time performance and usability. The newest iteration of jViz.RNA is available at https://jviz.cs.sfu.ca/download/download.html.Electronic supplementary materialThe online version of this article (doi:10.1186/s12859-017-1682-0) contains supplementary material, which is available to authorized users.
RNA visualization is crucial in order to understand the relationship that exists between RNA structure and its function, as well as the development of better RNA structure prediction algorithms. However, in the context of RNA visualization, one key structure remains difficult to visualize: Pseudoknots. Pseudoknots occur in RNA folding when two secondary structural components form base-pairs between them. The three-dimensional nature of these components makes them challenging to visualize in two-dimensional media, such as print media or screens. In this review, we focus on the advancements that have been made in the field of RNA visualization in two-dimensional media in the past two decades. The review aims at presenting all relevant aspects of pseudoknot visualization. We start with an overview of several pseudoknotted structures and their relevance in RNA function. Next, we discuss the theoretical basis for RNA structural topology classification and present RNA classification systems for both pseudoknotted and non-pseudoknotted RNAs. Each description of RNA classification system is followed by a discussion of the software tools and algorithms developed to date to visualize RNA, comparing the different tools' strengths and shortcomings.
Many problems in Computational Biology and Bioinformatics involve classification, such as the classification of cell samples into malignant (cancer) or benign (normal). For such tasks, we propose EvoDNN, an evolutionary deep neural network that employs an evolutionary algorithm to evolve deep heterogeneous feed-forward neural networks. While the majority of current feed-forward neural networks employ user defined homogeneous activation functions, EvoDNN creates heterogeneous multi-layer networks where each neuron's activation function is not statically defined by the user, but dynamically optimized during evolution. The main advantage offered by EvoDNN lies in that the activation functions do not need to be differentiable. This feature gives users a great degree of flexibility over which activation functions EvoDNN can utilize. This thesis demonstrates how EvoDNN can simultaneously optimize each neuron's weight, bias, and activation function, and empirically shows a superior performance compared to feed-forward neural networks trained with backpropagation method, random forest method, and our earlier approach EvoNN which employed a single hidden layer.
Previously, we have introduced an improved version of jViz.RNA which enabled faster and more stable RNA visualization by employing compressed tree graphs. However, the new RNA representation and visualization method required a sophisticated mechanism of pseudoknot visualization. In this work, we present our novel pseudoknot classification and implementation of pseudoknot visualization in the context of the new RNA graph model. We then compare our approach with other RNA visualization software, and demonstrate jViz.RNA 4.0’s benefits compared to other software. Additionally, we introduce interactive editing functionality into jViz.RNA and demonstrate its benefits in exploring and building RNA structures. The results presented highlight the new high degree of utility jViz.RNA 4.0 now offers. Users are now able to visualize pseudoknotted RNA, manipulate the resulting automatic layouts to suit their individual needs, and change both positioning and connectivity of the RNA molecules examined. Care was taken to limit overlap between structural elements, particularly in the case of pseudoknots to ensure an intuitive and informative layout of the final RNA structure. Availability : The software is freely available at: https://jviz.cs.sfu.ca/ .
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.