No abstract
Translation apps and devices are often presented in the context of providing assistance while traveling abroad. However, the spectrum of needs for cross-language communication is much wider. To investigate these needs, we conducted three studies with populations spanning socioeconomic status and geographic regions: (1) United States-based travelers, (2) migrant workers in India, and (3) immigrant populations in the United States. We compare frequent travelers' perception and actual translation needs with those of the two migrant communities. The latter two, with low language proficiency, have the greatest translation needs to navigate their daily lives. However, current mobile translation apps do not meet these needs. Our findings provide new insights on the usage practices and limitations of mobile translation tools. Finally, we propose design implications to help apps better serve these unmet needs.
Crowdsourced labor markets represent a powerful new paradigm for accomplishing work. Understanding the motivating factors that lead to high quality work could have significant benefits. However, researchers have so far found that motivating factors such as increased monetary reward generally increase workers’ willingness to accept a task or the speed at which a task is completed, but do not improve the quality of the work. We hypothesize that factors that increase the intrinsic motivation of a task – such as framing a task as helping others – may succeed in improving output quality where extrinsic motivators such as increased pay do not. In this paper we present an experiment testing this hypothesis along with a novel experimental design that enables controlled experimentation with intrinsic and extrinsic motivators in Amazon’s Mechanical Turk, a popular crowdsourcing task market. Results suggest that intrinsic motivation can indeed improve the quality of workers’ output, confirming our hypothesis. Furthermore, we find a synergistic interaction between intrinsic and extrinsic motivators that runs contrary to previous literature suggesting “crowding out” effects. Our results have significant practical and theoretical implications for crowd work.
Modern smartphones can create compelling virtual reality (VR) experiences through the use of VR enclosures, devices that encase the phone and project stereoscopic renderings through lenses into the user's eyes. Since the touch screen in such designs is typically hidden inside an enclosure, the main interaction mechanism of the device is not accessible. We present a new magnetic input mechanism for mobile VR devices which is wireless, unpowered, inexpensive, provides physical feedback, requires no calibration, and works reliably on the majority of modern smartphones. This is the main input mechanism for Google Cardboard, of which there are over one million units. We show robust gesture recognition, at an accuracy of greater than 95% across smartphones and assess the capabilities, accuracy and limitations of our technique through a user study.
No abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.