The late Miocene-early Pliocene biogenic bloom was an extended time interval characterised by elevated ocean export productivity at numerous locations. As primary productivity is nutrient-limited at low-to-mid latitudes, this bloom has been attributed to an increase or a redistribution of available nutrients, potentially involving ocean-gateway or monsoon-related mechanisms. While the exact causal feedbacks remain debated, there is even less consensus on what caused the end of the biogenic bloom. Here, we compile Mio-Pliocene paleoproductivity proxy data from all major ocean basins to evaluate the timing and pacing of this termination. This systematic analysis reveals an abrupt and sustained reduction in low-latitude ocean productivity at 4.6–4.4 Ma. The decline in productivity coincided with a prolonged period of low orbital eccentricity and a shift towards lower-amplitude obliquity, an astronomical configuration linked to reduced East Asian Monsoon intensity and decreased riverine nutrient supply.
Pre-Quaternary paleoclimate studies in Australia mainly focus on terrestrial records from the southeastern part of the continent. IODP Expedition 356 drilled on the northwestern Australian shelf, yielding Miocene-Pleistocene paleoclimate records in an area where climate archives are scarce. Postexpedition research revealed a dry-to-humid transition across the latest Miocene and early Pliocene (start of the "Humid Interval"). However, the complex tectonic history of the area makes these interpretations challenging. In this study, we investigate late Miocene to early Pliocene sediment cores from two sites that are only 100 km apart but situated in two adjacent basins (Northern Carnarvon and Roebuck Basins). Combining lithofacies study, time series analysis of potassium content (K wt%), and calcareous nannofossil abundance counts (N/g), this work disentangles the complex interplay between basin evolution and climate change between 6.1 and 4 Ma. Overall, the investigated proxies show high correlation between both sites, except during 6.1-5.7 Ma. During this interval, Site U1463 records a gradual increase in K wt%, correlated with basin deepening, whereas Site U1464 records an abrupt rise in K wt% at~6 Ma. We explain this diachronicity by differential basin subsidence. The tectonic interplay with our paleorecords makes it difficult to pinpoint the exact onset of the "Humid Interval," but we conclude that K wt% and coccolith abundances at Site U1464 indicate that a fluvial deposition system was already established since at least 6 Ma. This age is consistent with data supporting a southward movement of the Intertropical Convergence Zone rain belt at~7 Ma. Previous work has revealed long-term and short-term fluctuations of arid and humid conditions during the Pleistocene and Pliocene, with a bias toward paleorecords from the southeastern part of the continent (
A natural pH gradient caused by marine CO2 seeps off the Methana peninsula (Saronikos Gulf, eastern Peloponnese peninsula) was used as a natural laboratory to assess potential effects of ocean acidification on coccolithophores. Coccolithophore communities were therefore investigated in plankton samples collected during September 2011, September 2016 and March 2017. The recorded cell concentrations were up to ~50 x103 cells/l, with a high Shannon index of up to 2.8, along a pH gradient from 7.61 to 8.18, with values being occasionally <7. Numerous holococcolithophore species represented 60–90% of the surface water assemblages in most samples during September samplings. Emiliania huxleyi was present only in low relative abundances in September samples, but it dominated in March assemblages. Neither malformed nor corroded coccolithophores were documented. Changes in the community structure can possibly be related to increased temperatures, while the overall trend associates low pH values with high cell densities. Our preliminary results indicate that in long-termed acidified, warm and stratified conditions, the study of the total coccolithophore assemblage may prove useful to recognize the intercommunity variability, which favors the increment of lightly calcified species such as holococcolithophores.
This study aims to presents the species composition of living coccolithophore communities in the NE Aegean Sea, investigating their spatial and temporal variations along a north-south transect in the area receiving the inflowing surface Black Sea Water (BSW) over the deeper Levantine Water (LW) layer. Coccolithophores in the area were relatively diverse and a total of 95 species over 3 sampling periods studied were recognized using Scanning Electron Microscope (SEM) techniques. R-mode hierarchical cluster analysis distinguished two coccolithophore Groups (I, IIa, IIb, IIc) with different ecological preferences. Emiliania huxleyi was the most abundant species of Group I, whereas Syracosphaera spp., Rhabdosphaera spp. and holococcolithophores were prevailing in the highly diversified Group II assemblages. Biometric analysis conducted on E. huxleyi coccoliths from Aegean water column and Black Sea sediment trap samples, indicated that during autumn, NE Aegean specimens in samples under BSW influence were featured by unimodal distribution concerning the coccolith relative tube width, with values similar to those provided by the Black Sea specimens. In early spring, coccoliths in the stations with increased BSW influx displayed a bimodal pattern of relative tube width with smaller values found mostly in the surface layers, while the distribution became again unimodal and dominated by larger values within the deeper LW layers. In the summer period, the typical LW holococcolithophore species (Group II) presented low cell numbers in the surface layer (<20 m), which is their usual ecological niche in the Aegean Sea, compared to greater depths, therefore marking LW mass flowing beneath the less saline 2 BSW surface lid. In contrast to Black Sea early summer bloom conditions, E. huxleyi was almost absent in the NE Aegean during the summer sampling period.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.