This paper presents an approach for prediction of results for sport events. Usually the sport forecasting approaches are based on structured data. We test the hypothesis that the sports results can be predicted by using natural language processing and machine learning techniques applied over interviews with the players shortly before the sport events. The proposed method uses deep learning contextual models, applied over unstructured textual documents. Several experiments were performed for interviews with players in individual sports like boxing, martial arts, and tennis. The results from the conducted experiment confirmed our initial assumption that an interview from a sportsman before a match contains information that can be used for prediction the outcome from it. Furthermore, the results provide strong evidence in support of our research hypothesis, that is, we can predict the outcome from a sport match analyzing an interview, given before it.
We describe the submission of the team of the Sofia University to SemEval-2014 Task 9 on Sentiment Analysis in Twitter. We participated in subtask B, where the participating systems had to predict whether a Twitter message expresses positive, negative, or neutral sentiment. We trained an SVM classifier with a linear kernel using a variety of features. We used publicly available resources only, and thus our results should be easily replicable. Overall, our system is ranked 20th out of 50 submissions (by 44 teams) based on the average of the three 2014 evaluation data scores, with an F1-score of 63.62 on general tweets, 48.37 on sarcastic tweets, and 68.24 on LiveJournal messages.
This paper presents an approach for the automatic association of diagnoses in Bulgarian language to ICD-10 codes. Since this task is currently performed manually by medical professionals, the ability to automate it would save time and allow doctors to focus more on patient care. The presented approach employs a fine-tuned language model (i.e. BERT) as a multi-class classification model. As there are several different types of BERT models, we conduct experiments to assess the applicability of domain and language specific model adaptation. To train our models we use a big corpora of about 350,000 textual descriptions of diagnosis in Bulgarian language annotated with ICD-10 codes. We conduct experiments comparing the accuracy of ICD-10 code prediction using different types of BERT language models. The results show that the MultilingualBERT model (Accuracy Top 1-81%; Macro F1-86%, MRR Top 5-88%) outperforms other models. However, all models seem to suffer from the class imbalance in the training dataset. The achieved accuracy of prediction in the experiments can be evaluated as very high, given the huge amount of classes and noisiness of the data. The result also provides evidence that the collected dataset and the proposed approach can be useful in building an application to help medical practitioners with this task and encourages further research to improve the prediction
We propose methods for automatic generation of corpora that contains descriptions of diagnoses in Bulgarian and their associated codes in ICD-10-CM (International Classification of Diseases, 10th revision, Clinical Modification). The proposed approach is based on the available open data and Linked Open Data and can be easily adapted for other languages. The resulted corpora generated for the Bulgarian clinical texts consists of about 370,000 pairs of diagnoses and corresponding ICD-10 codes and is beyond the usual size that can be generated manually, moreover it was created from scratch and for a relatively short time. Further updates of the corpora are also possible whenever new open resources are available or the current ones are updated.This research is partially funded by the Bulgarian Ministry of Education and Science, grant DO1-200/2018 'Electronic health care in Bulgaria' (e-Zdrave) and the Bulgarian National Science Fund, grant DN-02/4-2016 'Specialized Data Mining Methods Based on Semantic Attributes' (IZIDA). We are grateful to anonymous reviewers for useful comments and suggestions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.