Online real-estate information systems such as Zillow and Trulia have gained increasing popularity in recent years. One important feature offered by these systems is the online home price estimate through automated data-intensive computation based on housing information and comparative market value analysis. State-of-the-art approaches model house prices as a combination of a latent land desirability surface and a regression from house features. However, by using uniformly damping kernels, they are unable to handle irregularly shaped regions or capture land value discontinuities within the same region due to the existence of implicit sub-communities, which are common in real-world scenarios. In this paper, we explore the novel application of recent advances in spatial functional analysis to house price modeling and propose the Hierarchical Spatial Functional Model (HSFM), which decomposes house values into land desirability at both the global scale and hidden local scales as well as the feature regression component. We propose statistical learning algorithms based on finite-element spatial functional analysis and spatial constrained clustering to train our model. Extensive evaluations based on housing data in a major Canadian city show that our proposed approach can reduce the mean relative house price estimation error down to 6.60%.
Reconstructing fine-grained spatial densities from coarse-grained measurements, namely the aggregate observations recorded for each subregion in the spatial field of interest, is a critical problem in many real world applications. In this paper, we propose a novel Constrained Spatial Smoothing (CSS) approach for the problem of spatial data reconstruction. We observe that local continuity exists in many types of spatial data. Based on this observation, our approach performs sparse recovery via a finite element method, while in the meantime enforcing the aggregated observation constraints through an innovative use of the Alternating Direction Method of Multipliers (ADMM) algorithm framework. Furthermore, our approach is able to incorporate external information as a regression add-on to further enhance recovery performance. To evaluate our approach, we study the problem of reconstructing the spatial distribution of cellphone traffic volumes based on aggregate volumes recorded at sparsely scattered base stations. We perform extensive experiments based on a large dataset of Call Detail Records and a geographical and demographical attribute dataset from the city of Milan, and compare our approach with other methods such as Spatial Spline Regression. The evaluation results show that our approach significantly outperforms various baseline approaches. This proves that jointly modeling the underlying spatial continuity and the local features that characterize the heterogeneity of different locations can help improve the performance of spatial recovery.
Work in machine learning has grown tremendously in the past years, but has had little to no impact on optimal search approaches. This paper looks at challenges in using deep learning as a part of optimal search, including what is feasible using current public frameworks, and what barriers exist for further adoption. The primary contribution of the paper is to show how to learn admissible heuristics through supervised learning from an existing heuristic. Several approaches are described, with the most successful approach being based on learning a heuristic as a classifier and then adjusting the quantile used with the classifier to ensure heuristic admissibility, which is required for optimal solutions. A secondary contribution is a description of the Batch A* algorithm, which can batch evaluations for more efficient use by the GPU. While ANNs can effectively learn heuristics that produce smaller search trees than alternate compression approaches, there still exists a time overhead when compared to efficient C++ implementations. This point of evaluation points out a challenge for future work.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.