Pain per se may increase anxiety and conversely, anxiety may increase pain. Therefore, a positive feedback loop between anxiety and pain possibly contributes to pain and suffering in some pathophysiological pain conditions, such as that induced by peripheral nerve injury. Recent results indicate that transient receptor channels 4 and 5 (TRPC4/C5) in the amygdala have anxiogenic effects in rodents, while their role in chronic pain conditions is not known. Here, we studied whether the amygdaloid TRPC4/C5 that are known to have anxiogenic properties contribute to the maintenance of sensory or affective aspects of pain in an experimental model of peripheral neuropathy. Rats with a spared nerve injury (SNI) model of neuropathy in the left hind limb had a chronic cannula for microinjections of drugs into the right amygdala or the internal capsule (a control site). Sensory pain was assessed by determining mechanical hypersensitivity with calibrated monofilaments and affective pain by determining aversive place-conditioning. Amygdaloid treatment with ML-204, a TRPC4/C5 antagonist, produced a dose-related (5-10 μg) antihypersensitivity effect, without obvious side-effects. Additionally, amygdaloid administration of ML-204 reduced affective-like pain behavior. In the internal capsule, ML-204 had no effect on hypersensitivity or affective-like pain in SNI animals. In healthy controls, amygdaloid administration of ML-204 failed to influence pain behavior induced by mechanical stimulation or noxious heat. The results indicate that the amygdaloid TRPC4/C5 contribute to maintenance of pain hypersensitivity and pain affect in neuropathy.
Stimulation of the secondary somatosensory cortex (S2) has attenuated pain in humans and inflammatory nociception in animals. Here we studied S2 stimulation-induced antinociception and its underlying mechanisms in an experimental animal model of neuropathy induced by spinal nerve ligation (SNL). Effect of S2 stimulation on heat-evoked limb withdrawal latency was assessed in lightly anesthetized rats that were divided into three groups based on prior surgery and monofilament testing before induction of anesthesia: ) sham-operated group and) hypersensitive and ) nonhypersensitive (mechanically) SNL groups. In a group of hypersensitive SNL animals, a 5-HT receptor agonist was microinjected into the rostroventromedial medulla (RVM) to assess whether autoinhibition of serotonergic cell bodies blocks antinociception. Additionally, effect of S2 stimulation on pronociceptive ON-cells and antinociceptive OFF-cells in the RVM or nociceptive spinal wide dynamic range (WDR) neurons were assessed in anesthetized hypersensitive SNL animals. S2 stimulation induced antinociception in hypersensitive but not in nonhypersensitive SNL or sham-operated animals. Antinociception was prevented by a 5-HT receptor agonist in the RVM. Antinociception was associated with decreased duration of heat-evoked response in RVM ON-cells. In spinal WDR neurons, heat-evoked discharge was delayed by S2 stimulation, and this antinociceptive effect was prevented by blocking spinal 5-HT receptors. The results indicate that S2 stimulation suppresses nociception in SNL animals if SNL is associated with tactile allodynia-like hypersensitivity. In hypersensitive SNL animals, S2 stimulation induces antinociception mediated by medullospinal serotonergic pathways acting on the spinal 5-HT receptor, and partly through reduction of the RVM ON-cell discharge. Stimulation of S2 cortex, but not that of an adjacent cortical area, induced descending heat antinociception in rats with the spinal nerve ligation-induced model of neuropathy. Antinociception was bilateral, and it involved suppression of pronociceptive medullary cells and activation of serotonergic pathways that act on the spinal 5-HT receptor. S2 stimulation failed to induce descending antinociceptive effect in sham-operated controls or in nerve-ligated animals that had not developed mechanical hypersensitivity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.