Intrinsically disordered proteins (IDPs) carry out many biological functions. They lack a stable three-dimensional structure, but rather adopt many different conformations in dynamic equilibrium. The interplay between local dynamics and global rearrangements is key for their function. In IDPs, proline residues are significantly enriched. Given their unique physicochemical and structural properties, a more detailed understanding of their potential role in stabilizing partially folded states in IDPs is highly desirable. Nuclear magnetic resonance (NMR) spectroscopy, and in particular 13 C-detected NMR, is especially suitable to address these questions. We applied a 13 C-detected strategy to study Osteopontin, a largely disordered IDP with a central compact region. By employing the exquisite sensitivity and spectral resolution of these novel techniques we gained unprecedented insight into cis-Pro populations, their local structural dynamics and their role in mediating long-range contacts. Our findings clearly call for a reassessment of the structural and functional role of proline residues in IDPs. The emerging picture shows that proline residues have ambivalent structural roles. They are not simply disorder promoters but rather can, depending on the primary sequence context, act as nucleation sites for structural compaction in IDPs. These unexpected features provide a versatile mechanistic toolbox to enrich the conformational ensembles of IDPs with specific features for adapting to changing molecular and cellular environments.
Interactions of transmembrane receptors with their extracellular ligands are essential for cellular communication and signaling and are therefore a major focus in drug discovery programs. The transition from in vitro to live cell interaction studies, however, is typically a bottleneck in many drug discovery projects due to the challenge of obtaining atomic‐resolution information under near‐physiological conditions. Although NMR spectroscopy is ideally suited to overcome this limitation, several experimental impairments are still present. Herein, we propose the use of methylcellulose hydrogels to study extracellular proteins and their interactions with plasma membrane receptors. This approach reduces cell sedimentation, prevents the internalization of membrane receptors, and increases cell survival, while retaining the free tumbling of extracellular proteins.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.