Educational Data Mining (EDM) is a research field that focuses on the application of data mining, machine learning, and statistical methods to detect patterns in large collections of educational data. Different machine learning techniques have been applied in this field over the years, but it has been recently that Deep Learning has gained increasing attention in the educational domain. Deep Learning is a machine learning method based on neural network architectures with multiple layers of processing units, which has been successfully applied to a broad set of problems in the areas of image recognition and natural language processing. This paper surveys the research carried out in Deep Learning techniques applied to EDM, from its origins to the present day. The main goals of this study are to identify the EDM tasks that have benefited from Deep Learning and those that are pending to be explored, to describe the main datasets used, to provide an overview of the key concepts, main architectures, and configurations of Deep Learning and its applications to EDM, and to discuss current state-of-the-art and future directions on this area of research.
A new approach to narrative abstractive summarization (NATSUM) is presented in this paper. NATSUM is centered on generating a narrative chronologically ordered summary about a target entity from several news documents related to the same topic. To achieve this, first, our system creates a cross-document timeline where a time point contains all the event mentions that refer to the same event. This timeline is enriched with all the arguments of the events that are extracted from different documents. Secondly, using natural language generation techniques, one sentence for each event is produced using the arguments involved in the event. Specifically, a hybrid surface realization approach is used, based on over-generation and ranking techniques. The evaluation demonstrates that NATSUM performed better than extractive summarization approaches and competitive abstractive baselines, improving the F1-measure at least by 50%, when a real scenario is simulated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.