Online photo services such as Flickr and Zooomr allow users to share their photos with family, friends, and the online community at large. An important facet of these services is that users manually annotate their photos using so called tags, which describe the contents of the photo or provide additional contextual and semantical information. In this paper we investigate how we can assist users in the tagging phase. The contribution of our research is twofold. We analyse a representative snapshot of Flickr and present the results by means of a tag characterisation focussing on how users tags photos and what information is contained in the tagging. Based on this analysis, we present and evaluate tag recommendation strategies to support the user in the photo annotation task by recommending a set of tags that can be added to the photo. The results of the empirical evaluation show that we can effectively recommend relevant tags for a variety of photos with different levels of exhaustiveness of original tagging.
INEX has through the years provided two types of queries: Content-Only queries (CO) and Content-And-Structure queries (CAS). The CO language has not changed much, but the CAS language has been more problematic. For the CAS queries, the INEX 02 query language proved insufficient for specifying problems for INEX 03. This was addressed by using an extended version of XPath, which, in turn, proved too complex to use correctly. Recently, an INEX working group identified the minimal set of requirements for a suitable query language for future workshops. From this analysis a new IR query language NEXI is introduced for upcoming workshops.
XML retrieval is a departure from standard document retrieval in which each individual XML element, ranging from italicized words or phrases to full blown articles, is a potentially retrievable unit. The distribution of XML element lengths is unlike what we usually observe in standard document collections, prompting us to revisit the issue of document length normalization. We perform a comparative analysis of arbitrary elements versus relevant elements, and show the importance of length as a parameter for XML retrieval. Within the language modeling framework, we investigate a range of techniques that deal with length either directly or indirectly. We observe a length bias introduced by the amount of smoothing, and show the importance of extreme length priors for XML retrieval. We also show that simply removing shorter elements from the index (by introducing a cut-off value) does not create an appropriate document length normalization. Even after increasing the minimal size of XML elements occurring in the index, the importance of an extreme length bias remains.
Tagging has emerged as a popular means to annotate on-line objects such as bookmarks, photos and videos. Tags vary in semantic meaning and can describe different aspects of a media object. Tags describe the content of the media as well as locations, dates, people and other associated meta-data. Being able to automatically classify tags into semantic categories allows us to understand better the way users annotate media objects and to build tools for viewing and browsing the media objects. In this paper we present a generic method for classifying tags using third party open content resources, such as Wikipedia and the Open Directory. Our method uses structural patterns that can be extracted from resource meta-data. We describe the implementation of our method on Wikipedia using WordNet categories as our classification schema and ground truth. Two structural patterns found in Wikipedia are used for training and classification: categories and templates. We apply our system to classifying Flickr tags. Compared to a WordNet baseline our method increases the coverage of the Flickr vocabulary by 115%. We can classify many important entities that are not covered by WordNet, such as, London Eye, Big Island, Ronaldinho, geocaching and wii.
XML retrieval is a departure from standard document retrieval in which each individual XML element, ranging from italicized words or phrases to full blown articles, is a retrievable unit. The distribution of XML element lengths is unlike what we usually observe in standard document collections, prompting us to revisit the issue of document length normalization. We perform a comparative analysis of arbitrary elements versus relevant elements, and show the importance of element length as a parameter for XML retrieval. Within the language modeling framework, we investigate a range of techniques that deal with length either directly or indirectly. We observe a length-bias introduced by the amount of smoothing, and show the importance of extreme length bias for XML retrieval. We also show that simply removing shorter elements from the index (by introducing a cut-off value) does not create an appropriate element length normalization. Even after restricting the minimal size of XML elements occurring in the index, the importance of an extreme explicit length bias remains.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.