Existing deep convolutional neural networks have found major success in image deraining, but at the expense of an enormous number of parameters. This limits their potential application, for example in mobile devices. In this paper, we propose a lightweight pyramid of networks (LPNet) for single image deraining. Instead of designing a complex network structures, we use domain-specific knowledge to simplify the learning process. Specifically, we find that by introducing the mature Gaussian-Laplacian image pyramid decomposition technology to the neural network, the learning problem at each pyramid level is greatly simplified and can be handled by a relatively shallow network with few parameters. We adopt recursive and residual network structures to build the proposed LPNet, which has less than 8K parameters while still achieving state-of-the-art performance on rain removal. We also discuss the potential value of LPNet for other low-and high-level vision tasks.Index Terms-Rain removal, deep convolutional neural network (CNN), image pyramid, residual learning, lightweight networks.
Previous scene text detection methods have progressed substantially over the past years. However, limited by the receptive field of CNNs and the simple representations like rectangle bounding box or quadrangle adopted to describe text, previous methods may fall short when dealing with more challenging text instances, such as extremely long text and arbitrarily shaped text. To address these two problems, we present a novel text detector namely LOMO, which localizes the text progressively for multiple times (or in other word, LOok More than Once). LOMO consists of a direct regressor (DR), an iterative refinement module (IRM) and a shape expression module (SEM). At first, text proposals in the form of quadrangle are generated by DR branch. Next, IRM progressively perceives the entire long text by iterative refinement based on the extracted feature blocks of preliminary proposals. Finally, a SEM is introduced to reconstruct more precise representation of irregular text by considering the geometry properties of text instance, including text region, text center line and border offsets. The state-of-the-art results on several public benchmarks including ICDAR2017-RCTW, SCUT-CTW1500, Total-Text, ICDAR2015 and ICDAR17-MLT confirm the striking robustness and effectiveness of LOMO.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.