Liver progenitor cells (LPCs) represent the cell compartment facilitating hepatic regeneration during chronic injury while hepatocyte-mediated repair mechanisms are compromised. LPC proliferation is frequently observed in human chronic liver diseases such as hereditary hemochromatosis, fatty liver disease, and chronic hepatitis. In vivo studies have suggested that a tumor necrosis factor family member, tumor necrosis factor–like weak inducer of apoptosis (TWEAK), is promitotic for LPCs; whether it acts directly is not known. In our murine choline-deficient, ethionine-supplemented (CDE) model of chronic liver injury, TWEAK receptor [fibroblast growth factor-inducible 14 (Fn14)] expression in the whole liver is massively upregulated. We therefore set out to investigate whether TWEAK/Fn14 signaling promotes the regenerative response in CDE-induced chronic liver injury by mitotic stimulation of LPCs. Fn14 knockout (KO) mice showed significantly reduced LPC numbers and attenuated inflammation and cytokine production after 2 weeks of CDE feeding. The close association between LPC proliferation and activation of hepatic stellate cells in chronic liver injury prompted us to investigate whether fibrogenesis was also modulated in Fn14 KO animals. Collagen deposition and expression of key fibrogenesis mediators were reduced after 2 weeks of injury, and this correlated with LPC numbers. Furthermore, the injection of 2-week-CDE-treated wildtype animals with TWEAK led to increased proliferation of nonparenchymal pan cytokeratin–positive cells. Stimulation of an Fn14-positive LPC line with TWEAK led to nuclear factor kappa light chain enhancer of activated B cells (NFκB) activation and dose-dependent proliferation, which was diminished after targeting of the p50 NFκB subunit by RNA interference. Conclusion: TWEAK acts directly and stimulates LPC mitosis in an Fn14-dependent and NFκB-dependent fashion, and signaling via this pathway mediates the LPC response to CDE-induced injury and regeneration. (Hepatology 2010)
Stem cells in mammary tissue have been well characterised by using the mammary stem cell marker, cytokeratin (CK) 5 and the mature epithelial markers CK14, CK18 and CK19. As these markers have never been reported in cells from breastmilk, the aim of this study has been to determine whether mammary stem cells are present in expressed human breastmilk. Cultured cells from human breastmilk were studied by using immunofluorescent labelling and reverse transcription/polymerase chain reaction (RT-PCR). We found a heterogeneous population of cells with differential expression of CK5, CK14, CK18 and CK19. Further, by using the multipotent stem cell marker, nestin, we identified cells in culture that were positive only for nestin or double-positive for CK5/nestin, whereas no co-staining was observed for CK14, CK18 and CK19 with nestin. When cells isolated from breastmilk were analysed by using RT-PCR prior to culture, only nestin and CK18 were detected, thereby indicating that breastmilk contained differentiated epithelial and putative stem cells. Furthermore, fluorescence-activated cell-sorting analysis demonstrated, in breastmilk, a small side-population of cells that excluded Hoechst 33342 (a key property of multipotent stem cells). When stained for nestin, the cells in the side-population were positive, whereas those not in the side-population were negative. The presence of nestin-positive putative mammary stem cells suggests that human breastmilk is a readily available and non-invasive source of putative mammary stem cells that may be useful for research into both mammary gland biology and more general stem cell biology.
BackgroundSPARC is a matricellular protein involved in tissue remodelling, cell migration and angiogenesis, while forkhead box P3 (FOXP3) protein functions as a transcription factor involved in immune cell regulation. Both SPARC and FOXP3 can play an anti-tumorigenic role in cancer progression. The aim was to determine if SPARC, FOXP3, CD8 and CD45RO expression levels are associated with colorectal cancer (CRC) stage, disease outcome and long-term cancer-specific survival (CSS) in stage II and III CRC.Methods and FindingsSPARC expression was initially assessed in 120 paired normal and stage I-IV CRCs. Subsequently, approximately 1000 paired patient samples of stage II or III CRCs in tissue microarrays were stained for SPARC, FOXP3, CD8 or CD45RO. Proportional hazards modelling assessed correlations between these markers and clinicopathological data, including disease outcome and cancer specific survival (CSS). Both SPARC and FOXP3 expression were significantly greater in CRC than normal colon (p<0.0001). High SPARC expression correlated with good disease outcome (≥60 mths without disease recurrence, p = 0.0039) and better long-term CSS in stage II CRC (<0.0001). In stage III CRC, high SPARC expression correlated with better long-term CSS (p<0.0001) and less adjuvant chemotherapy use (p = 0.01). High FOXP3 correlated with a good disease outcome, better long-term CSS and less adjuvant chemotherapy use in stage II (p<0.0037, <0.0001 and p = 0.04 respectively), but not in stage III CRC. High CD8 and CD45RO expression correlated with better disease outcome in stage II CRC, and better CSS, but the differences were not as marked as for SPARC and FOXP3.ConclusionsThese data suggest that high SPARC and FOXP3 are associated with better disease outcome in stage II CRC and may be prognostic indicators of CSS. Further assessment of whether these markers predict patients at high risk of recurrence with stage II CRC and functional studies of these effects are underway
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.