The SARS-CoV-2 pandemic has again shown that structural biology plays an important role in understanding biological mechanisms and exploiting structural data for therapeutic interventions. Notably, previous work on SARS-related glycoproteins has paved the way for the rapid structural determination of the SARS-CoV-2 S glycoprotein, which is the main target for neutralizing antibodies. Therefore, all vaccine approaches aimed to employ S as an immunogen to induce neutralizing antibodies. Like all enveloped virus glycoproteins, SARS-CoV-2 S native prefusion trimers are in a metastable conformation, which primes the glycoprotein for the entry process via membrane fusion. S-mediated entry is associated with major conformational changes in S, which can expose many off-target epitopes that deviate vaccination approaches from the major aim of inducing neutralizing antibodies, which mainly target the native prefusion trimer conformation. Here, we review the viral glycoprotein stabilization methods developed prior to SARS-CoV-2, and applied to SARS-CoV-2 S, in order to stabilize S in the prefusion conformation. The importance of structure-based approaches is highlighted by the benefits of employing stabilized S trimers versus non-stabilized S in vaccines with respect to their protective efficacy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.