The aim of this work is to apply a semi-implicit (SI) strategy in an implicit-explicit (IMEX) Runge–Kutta (RK) setting introduced in Boscarino et al. (J Sci Comput 68:975–1001, 2016) to a sequence of 1D time-dependent partial differential equations (PDEs) with high order spatial derivatives. This strategy gives a great flexibility to treat these equations, and allows the construction of simple linearly implicit schemes without any Newton’s iteration. Furthermore, the SI IMEX-RK schemes so designed does not need any severe time step restriction that usually one has using explicit methods for the stability, i.e. $$\Delta t = {\mathcal {O}}(\Delta t^k)$$ Δ t = O ( Δ t k ) for the kth ($$k \ge 2$$ k ≥ 2 ) order PDEs. For the space discretization, this strategy is combined with finite difference schemes. We illustrate the effectiveness of the schemes with many applications to dissipative, dispersive and biharmonic-type equations. Numerical experiments show that the proposed schemes are stable and can achieve optimal orders of accuracy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.