SUMMARY The central region of the human retina, the fovea, provides high-acuity vision. The oculomotor system continually brings targets of interest into the fovea via ballistic eye movements (saccades). The fovea thus serves both as the locus for fixations and as the oculomotor reference for saccades. This highly automated process of foveation is functionally critical to vision and is observed from infancy [1, 2]. How would the oculomotor system adjust to loss of foveal vision (central scotoma)? Clinical observations of patients with central vision loss [3, 4] suggest a lengthy adjustment period [5], but the nature and dynamics of this adjustment remain unclear. Here we demonstrate that the oculomotor system can spontaneously and rapidly adopt a peripheral locus for fixation and can re-reference saccades to this locus, in normally sighted individuals whose central vision is blocked by an artificial scotoma. Once developed, the fixation locus is retained over weeks in the absence of the simulated scotoma. Our data reveal a basic guiding principle of the oculomotor system that prefers control simplicity over optimality. We demonstrate the importance of a visible scotoma on the speed of the adjustment and suggest a possible rehabilitation regimen for patients with central vision loss.
Abstract-On the whole, people recognize objects best when they see the objects from a familiar view and worse when they see the objects from views that were previously occluded from sight. Unexpectedly, we found haptic object recognition to be viewpoint-specific as well, even though hand movements were unrestricted. This viewpoint dependence was due to the hands preferring the back "view" of the objects. Furthermore, when the sensory modalities (visual vs. haptic) differed between learning an object and recognizing it, recognition performance was best when the objects were rotated back-to-front between learning and recognition. Our data indicate that the visual system recognizes the front view of objects best, whereas the hand recognizes objects best from the back.People explore and navigate through their environment mainly using sight and touch. In order to guide actions and interactions with objects, information acquired from the visual and the haptic systems must converge to form a coherent percept. What might be the nature of the representations underlying each sensory system, in order to allow this convergence? If the visual and haptic representations of an object are qualitatively different, a translation process must be involved for the two systems to communicate. The presence of a translator implies that moving information between the visual and haptic systems can be inefficient. In the experiments reported in this article, we studied the nature of object representation in each sensory system and the interaction between these systems. Specifically, we considered whether representations in each system are either dependent on or invariant to viewpoint.
Spatial-frequency characteristics of letter identification are much better understood in the fovea than in the periphery. The purpose of this study was to compare the spatial-frequency characteristics of letter identification in central and peripheral vision. We measured contrast thresholds for identifying single, Times-Roman lower-case letters that were spatially band-pass filtered. Each of the 26 letters was digitally filtered with a set of nine cosine log filters, with peak object spatial frequencies ranging from 0.63 to 10 c/letter, in half-octave steps. Bandwidth of the filters was 1 octave. Three observers with normal vision were each tested monocularly at the fovea, and at 5 degrees and 10 degrees in the inferior visual field. Letter sizes were 0.2, 0.4 and 0.6 log units larger than high contrast, unfiltered acuity letters. Plots of contrast sensitivity for letter identification vs. frequency of the band-pass filters exhibit spatial tuning. In general, the spatial-frequency characteristics of letter identification are fundamentally identical between central and peripheral vision. These characteristics include the scaling of the peak frequency of the spatial-tuning functions with letter size and the bandwidth of the tuning functions. The only difference between the fovea and the periphery is that for the same physical letter size, peak sensitivity of the spatial-tuning functions occurs at a higher retinal frequency at the fovea than in the periphery. To test whether or not the contrast sensitivity function (CSF) can account for the differences in the spatial-frequency characteristics of letter identification between central and peripheral vision, we incorporated a human CSF into an ideal-observer model, and tested the performance of this ideal-observer on the same letter identification task used with the human observers. Data from this CSF-ideal-observer resemble closely those of human observers, suggesting that the spatial-frequency characteristics of human letter identification can be accounted for by the CSF and the letter-identity information, without invoking selection among narrow-band spatial-frequency channels.
The integration of visual, lexical, and oculomotor information is a critical part of reading. Mr. Chips is an ideal-observer model that combines these sources of information optimally to read simple texts in the minimum number of saccades. In the model, the concept of the visual span (the number of letters that can be identified in a single fixation) plays a key, unifying role. The behavior of the model provides a computational framework for reexamining the literature on human reading saccades. Emergent properties of the model, such as regressive saccades and an optimal-viewing position, suggest new interpretations of human behavior. Because Mr. Chip's "retina" can have any (one-dimensional) arrangement of high-resolution regions and scotomas, the model can simulate common visual disorders. Surprising saccade strategies are linked to the pattern of scotomas. For example, Mr. Chips sometimes plans a saccade that places a decisive letter in a scotoma. This article provides the first quantitative model of the effects of scotomas on reading.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.