The idea of reinforcing glued laminated timber (glulam) beams came in response to the need to improve the mechanical properties, as well as to ensure higher reliability of this type of structural elements. This paper describes an experimental program which examines the reinforcement in flexure of glulam beams with carbon fibre reinforced plastic (CFRP) plates. Fifteen beams reinforced with CFRP at the tension side and five unreinforced control beams were instrumented and tested to failure in a four-point bending configuration. The mechanical properties of reinforced beams are compared to those of unreinforced beams with regard to the load-deflection behaviour, failure mode, ultimate load capacity, stiffness and strain distribution. The experimental results demonstrated the beneficial effect of the proposed reinforcing solution in terms of strength, stiffness and ductility.
This paper presents an analysis of bending behaviour of glued laminated timber (glulam) beams reinforced with carbon fibre reinforced polymer (CFRP) plates, based on finite element numerical modelling. Nonlinear 3-dimensional model was developed and validated by experimental tests carried out on unreinforced beams and beams reinforced with two different reinforcement arrangements. Suitable constitutive relationships for each material were utilised in the model, as well as anisotropic plasticity theory for timber in compression. Adhesive bond between CFRP plate and timber was modelled as a perfect connection. Beam failure in the model was defined by maximum stress criterion. The predicted behaviour of beams has shown good agreement with the experimental results in relation to load-deflection relationship, ultimate load, elastic stiffness and strain profile distribution. The non-linear behaviour of reinforced beams before failure was also achieved in the numerical analysis, confirming the finite element model to be accurate past the linear-elastic range. Experimentally tested reinforced beams usually failed in tensile zone after compressive plasticization of top lamination, which was also simulated in the numerical model. The results proved that the load carrying capacity, stiffness and ductility of glulam beams were successfully increased by addition of CFRP plate at tension side of the section.
Mount Tara is among the most important centers of Balkan and European ecosystem and species biodiversity. It is characterized by diversified and well-maintained communities of old deciduous and mixed coniferous forests (beech/fir/spruce). They represent a unique example of well preserved forests in SE Europe with numerous endemic and relict species of indigenous flora and fauna. The geographical information system (GIS) that we have created has proved an excellent tool for valorization and protection of all natural values and potentials of Tara National Park
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.