Objective: Cyclophosphamide (CPA) is a chemotherapeutic agent, induces hepatotoxicity as one of its side effects. Therefore, the present work was designed to investigate the protective role of bone marrow-derived mesenchymal stem cells (BM-MSCs) on CPA–induced hepatotoxicity in Ehrlich Ascites Carcinoma bearing-mice (EAC) and to test whether BM-MSCs influences the antitumor properties of the CPA. Methods: The hepatoprotective effects of BM-MSCs (single dose of 100 µl of a cell suspension containing allogenic BM-MSCs, i. v.) was evaluated in a model of hepatotoxicity by CPA (10 mg/kg/d i. p.) in EAC-female mice for one month. The anti-tumor activities of CPA and BM-MSCs were assessed by measuring mean tumor weight, mean survival time and the increase in life span. Moreover, ALT, AST, GGT, MDA, GSH, SOD, IL-6, IL10, caspase-3 and Bcl2 were measured. Results: The i. p. administration of CPA and BM-MSCs resulted in significant reductions in tumor size and mean tumor weight as well as caused concurrent significant increases in the life span as compared to the EAC mice. Furthermore, BM-MSCs ameliorated the liver enzyme markers namely ALT, AST, GGT, and hepatic oxidative stress through inhibition of MDA level that correlated with significant improvement in antioxidant status via increasing GSH and SOD levels as compared to both EAC and EAC+CPA groups. Moreover, BM-MSCs treatment significantly reduced the inflammatory marker level IL-6 as well as increment the level of IL-10 with subsequent decreases apoptosis via a depletion in the caspase-3 associated with an enhancement in the level of Bcl2 as compared to EAC group and EAC+CPA group. Minor histological lesions were observed in the liver tissue sections of mice treated with CPA and BM-MSCs as compared to the high histological lesions observed in the liver of the EAC group and CPA treated group. Conclusion: These results concluded that the combination treatment of BM-MSCs with CPA exhibited promising potential antitumor efficacy with greater safety than CPA treatment alone in mice via its antioxidant, anti-inflammatory and antiapoptotic effects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.