A large bulk band gap is critical for the application of quantum spin Hall (QSH) insulators or two-dimensional (2D) topological insulators (TIs) in spintronic devices operating at room temperature (RT). On the basis of first-principles calculations, we predicted a group of 2D TI BiX/SbX (X = H, F, Cl and Br) monolayers with extraordinarily large bulk gaps from 0.32 eV to a record value of 1.08 eV. These giant-gaps are entirely due to the result of the strong spin-orbit interaction related to the p x and p y orbitals of the Bi/Sb atoms around the two valleys K and K′ of the honeycomb lattice, which is significantly different from that consisting of the p z orbital as in graphene/silicene. The topological characteristic of BiX/SbX monolayers is confirmed by the calculated nontrivial Z 2 index and an explicit construction of the low-energy effective Hamiltonian in these systems. We demonstrate that the honeycomb structures of BiX monolayers remain stable even at 600 K. Owing to these features, the giant-gap TIs BiX/SbX monolayers are an ideal platform to realize many exotic phenomena and fabricate new quantum devices operating at RT. Furthermore, biased BiX/SbX monolayers become a quantum valley Hall insulator, exhibiting valley-selective circular dichroism. NPG Asia Materials (2014) 6, e147; doi:10.1038/am.2014.113; published online 12 December 2014 INTRODUCTION Quantum spin Hall (QSH) insulators, also known as two-dimensional (2D) topological insulators (TIs), have generated great interest in condensed matter physics and materials science because of their scientific importance as a novel quantum state and potential applications ranging from spintronics to topological quantum computation. 1-3 QSH insulators are characterized by an insulating bulk and fully spin-polarized gapless helical edge states without backscattering at the sample boundaries, which are protected by time-reversal symmetry. The prototypical concept of the QSH effect was first proposed by Kane and Mele 4,5 in graphene, in which the spin-orbit coupling (SOC) opens a band gap at the Dirac point. However, the rather weak second-order effective SOC makes the QSH effect in graphene only appear at an unrealistically low temperature. 6 To date, only the HgTe/CdTe quantum well has been verified to be a well-established QSH insulator experimentally. 7,8 Experimental evidence has also been presented recently for helical edge modes in inverted InAs/GaSb quantum wells. 9 The critical drawback of such a reported QSH state is their small bulk gaps, which are too small to make the predicted QSH effect observable under easily accessible experimental conditions. Thus, to observe the QSH effect at room
Topological nodal line semimetals, a novel quantum state of materials, possess topologically nontrivial valence and conduction bands that touch at a line near the Fermi level. The exotic band structure can lead to various novel properties, such as long-range Coulomb interaction and flat Landau levels. Recently, topological nodal lines have been observed in several bulk materials, such as PtSn4, ZrSiS, TlTaSe2 and PbTaSe2. However, in two-dimensional materials, experimental research on nodal line fermions is still lacking. Here, we report the discovery of two-dimensional Dirac nodal line fermions in monolayer Cu2Si based on combined theoretical calculations and angle-resolved photoemission spectroscopy measurements. The Dirac nodal lines in Cu2Si form two concentric loops centred around the Γ point and are protected by mirror reflection symmetry. Our results establish Cu2Si as a platform to study the novel physical properties in two-dimensional Dirac materials and provide opportunities to realize high-speed low-dissipation devices.
Remote or standoff detection of greenhouse gases, air pollutants, and biological agents with innovative ultrafast laser technology attracts growing interests in recent years. Hybrid femtosecond/picosecond coherent Raman spectroscopy is considered as one of the most versatile techniques due to its great advantages in terms of detection sensitivity and chemical specificity. However, the simultaneous requirement for the femtosecond pump and the picosecond probe increases the complexity of optical system. Herein, we demonstrate that air lasing naturally created inside a filament can serve as an ideal light source to probe Raman coherence excited by the femtosecond pump, producing coherent Raman signal with molecular vibrational signatures. The combination of pulse self-compression effect and air lasing action during filamentation improves Raman excitation efficiency and greatly simplifies the experimental setup. The air-lasing-assisted Raman spectroscopy was applied to quantitatively detect greenhouse gases mixed in air, and it was found that the minimum detectable concentrations of CO2 and SF6 can reach 0.1% and 0.03%, respectively. The ingenious designs, especially the optimization of pump-seed delay and the choice of perpendicular polarization, ensure a high detection sensitivity and signal stability. Moreover, it is demonstrated that this method can be used for simultaneously measuring CO2 and SF6 gases and distinguishing 12CO2 and 13CO2. The developed scheme provides a new route for high-sensitivity standoff detection and combustion diagnosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.