Meiotic recombination is an essential biological process that generates genetic diversity and ensures proper segregation of chromosomes during meiosis. From a large USDA dairy cattle pedigree with over half a million genotyped animals, we extracted 186,927 three-generation families, identified over 8.5 million maternal and paternal recombination events, and constructed sex-specific recombination maps for 59,309 autosomal SNPs. The recombination map spans for 25.5 Morgans in males and 23.2 Morgans in females, for a total studied region of 2,516 Mb (986 kb/cM in males and 1,085 kb/cM in females). The male map is 10% longer than the female map and the sex difference is most pronounced in the subtelomeric regions. We identified 1,792 male and 1,885 female putative recombination hotspots, with 720 hotspots shared between sexes. These hotspots encompass 3% of the genome but account for 25% of the genome-wide recombination events in both sexes. During the past forty years, males showed a decreasing trend in recombination rate that coincided with the artificial selection for milk production. Sex-specific GWAS analyses identified PRDM9 and CPLX1 to have significant effects on genome-wide recombination rate in both sexes. Two novel loci, NEK9 and REC114, were associated with recombination rate in both sexes, whereas three loci, MSH4, SMC3 and CEP55, affected recombination rate in females only. Among the multiple PRDM9 paralogues on the bovine genome, our GWAS of recombination hotspot usage together with linkage analysis identified the PRDM9 paralogue on chromosome 1 to be associated in the U.S. Holstein data. Given the largest sample size ever reported for such studies, our results reveal new insights into the understanding of cattle and mammalian recombination.
Common single-nucleotide polymorphisms (SNPs) are predicted to collectively explain 40–50% of phenotypic variation in human height, but identifying the specific variants and associated regions requires huge sample sizes1. Here, using data from a genome-wide association study of 5.4 million individuals of diverse ancestries, we show that 12,111 independent SNPs that are significantly associated with height account for nearly all of the common SNP-based heritability. These SNPs are clustered within 7,209 non-overlapping genomic segments with a mean size of around 90 kb, covering about 21% of the genome. The density of independent associations varies across the genome and the regions of increased density are enriched for biologically relevant genes. In out-of-sample estimation and prediction, the 12,111 SNPs (or all SNPs in the HapMap 3 panel2) account for 40% (45%) of phenotypic variance in populations of European ancestry but only around 10–20% (14–24%) in populations of other ancestries. Effect sizes, associated regions and gene prioritization are similar across ancestries, indicating that reduced prediction accuracy is likely to be explained by linkage disequilibrium and differences in allele frequency within associated regions. Finally, we show that the relevant biological pathways are detectable with smaller sample sizes than are needed to implicate causal genes and variants. Overall, this study provides a comprehensive map of specific genomic regions that contain the vast majority of common height-associated variants. Although this map is saturated for populations of European ancestry, further research is needed to achieve equivalent saturation in other ancestries.
Coronary artery disease (CAD) is a leading cause of death, yet its genetic determinants are not fully elucidated. We report a multi-ethnic genome-wide association study of CAD involving nearly a quarter of a million cases, incorporating the largest cohorts to date of Whites, Blacks, and Hispanics from the Million Veteran Program with existing studies including CARDIoGRAMplusC4D, UK Biobank, and Biobank Japan. We verify substantial and nearly equivalent heritability of CAD across multiple ancestral groups, discover 107 novel loci including the first nine on the X-chromosome, identify the first eight genome-wide significant loci among Blacks and Hispanics, and demonstrate that two common haplotypes are largely responsible for the risk stratification at the well-known 9p21 locus in most populations except those of African origin where both haplotypes are virtually absent. We identify 15 loci for angiographically derived burden of coronary atherosclerosis, which robustly overlap with the strongest and earliest loci reported to date for clinical CAD. Phenome-wide association analyses of novel loci and externally validated polygenic risk scores (PRS) augment signals from the insulin resistance cluster of risk factors and consequences, extend previously established pleiotropic associations of loci with traditional risk factors to include smoking and family history, and confirm a substantially reduced transferability of existing PRS to Blacks. Downstream integrative genomic analyses reinforce the critical role of endothelial, fibroblast, and smooth muscle cells within the coronary vessel wall in CAD susceptibility. Our study highlights the value of a multi-ethnic design in efficiently characterizing the genetic architecture of CAD across all human populations.
BackgroundAlthough genome-wide association and genomic selection studies have primarily focused on additive effects, dominance and imprinting effects play an important role in mammalian biology and development. The degree to which these non-additive genetic effects contribute to phenotypic variation and whether QTL acting in a non-additive manner can be detected in genetic association studies remain controversial.ResultsTo empirically answer these questions, we analyzed a large cattle dataset that consisted of 42,701 genotyped Holstein cows with genotyped parents and phenotypic records for eight production and reproduction traits. SNP genotypes were phased in pedigree to determine the parent-of-origin of alleles, and a three-component GREML was applied to obtain variance decomposition for additive, dominance, and imprinting effects. The results showed a significant non-zero contribution from dominance to production traits but not to reproduction traits. Imprinting effects significantly contributed to both production and reproduction traits. Interestingly, imprinting effects contributed more to reproduction traits than to production traits. Using GWAS and imputation-based fine-mapping analyses, we identified and validated a dominance association signal with milk yield near RUNX2, a candidate gene that has been associated with milk production in mice. When adding non-additive effects into the prediction models, however, we observed little or no increase in prediction accuracy for the eight traits analyzed.ConclusionsCollectively, our results suggested that non-additive effects contributed a non-negligible amount (more for reproduction traits) to the total genetic variance of complex traits in cattle, and detection of QTLs with non-additive effect is possible in GWAS using a large dataset.Electronic supplementary materialThe online version of this article (doi:10.1186/s12864-017-3821-4) contains supplementary material, which is available to authorized users.
BackgroundCrossover generated by meiotic recombination is a fundamental event that facilitates meiosis and sexual reproduction. Comparative studies have shown wide variation in recombination rate among species, but the characterization of recombination features between cattle breeds has not yet been performed. Cattle populations in North America count millions, and the dairy industry has genotyped millions of individuals with pedigree information that provide a unique opportunity to study breed-level variations in recombination.ResultsBased on large pedigrees of Jersey, Ayrshire and Brown Swiss cattle with genotype data, we identified over 3.4 million maternal and paternal crossover events from 161,309 three-generation families. We constructed six breed- and sex-specific genome-wide recombination maps using 58,982 autosomal SNPs for two sexes in the three dairy cattle breeds. A comparative analysis of the six recombination maps revealed similar global recombination patterns between cattle breeds but with significant differences between sexes. We confirmed that male recombination map is 10% longer than the female map in all three cattle breeds, consistent with previously reported results in Holstein cattle. When comparing recombination hotspot regions between cattle breeds, we found that 30% and 10% of the hotspots were shared between breeds in males and females, respectively, with each breed exhibiting some breed-specific hotspots. Finally, our multiple-breed GWAS found that SNPs in eight loci affected recombination rate and that the PRDM9 gene associated with hotspot usage in multiple cattle breeds, indicating a shared genetic basis for recombination across dairy cattle breeds.ConclusionsCollectively, our results generated breed- and sex-specific recombination maps for multiple cattle breeds, provided a comprehensive characterization and comparison of recombination patterns between breeds, and expanded our understanding of the breed-level variations in recombination features within an important livestock species.Electronic supplementary materialThe online version of this article (10.1186/s12864-018-4705-y) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.