The present work attempts to solve pollution problems in watery surroundings by aromatic compounds such as the phenol and the benzoic acid. Several ways of elimination of these compounds were the object of different research among which is the use of bacteria. In this framework, Pseudomonas aeruginosa bacterium is used to eliminate phenol and the benzoic acid. This made it possible to isolate the Pseudomonas aeruginosa bacterium directly on the nourishing environment containing phenol and benzoic acid as source of energy then the bacteria is incubated at 37℃ during a minimal duration of four days. Furthermore, we studied the influence of the Pseudomonas aeruginosa bacterium on the deterioration of an area exposed to a phenol and the benzoic acid concentration. Results obtained at the time of the different experimentations clearly show that phenol and the benzoic acid were eliminated by the Pseudomonas aeruginosa bacterium. However, it was noted that during the various investigations the bacterium Pseudomonas aeruginosa develops better in a phenol milieu and therefore degrades phenol more than benzoic acid
We studied the adsorption of pollutant benzoic acid by the modified bentonite of Maghnia (west of Algeria), and coal (Coal from the mines, southwest of Algeria, Bechar area) under three forms, crude and activated. Kinetic data show that the balance of bentonite (as amended) adsorbs organic acids better than activated and raw coal. Indeed, the intercalation of bentonite with benzoic acid causes an improvement in the texture of porous material, which allows its use in the adsorption of organic compounds. The adsorption isotherms (Langmuir and Freundlich) indicate that the adsorption of benzoic acid by the coal and bentonite yielded results favorably. The results obtained showed the practical value of using the activated coal and bentonite (as amended) in the field of remediation of water contaminated with organic pollutants
The aim of the present work is the removal of phenol by adsorption on a raw and activated crude or hard coal (C) with NaOH, ZnCl2 and H3PO4 in the region of Bechar (south-western Algeria). The development of adsorbents from precursors is inexpensive, requiring innovative techniques using concepts developed relevant to the physical handling, processing physical and chemical activation of coal into an activated coal, with the ability of fixing aromatic organic pollutants, namely phenol. The maximum surface area obtained from the activation with ZnCl2, H3PO4 and NaOH were 1000, 850 and 3000 m2 / g, respectively. The results clearly showed that hard coal activation greatly improved phenol fixing. The rate of phenol adsorption by activated hard coal is much higher than those obtained from raw coal through its holding capacity. Activated carbon porosity with NaOH is much higher than those obtained from coal activated by ZnCl2 and H3PO4. Activated coal can be an effective means of confinement in industrial disposal sites, avoiding migration of organic pollutants contained in these wastes to groundwater via the adsorption phenomenon. The development of such effective barriers, based on local resources can help solve the problem of water contamination
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.