Durum wheat is the 10th most important crop in the world, and its use traces back to the origin of agriculture. Unfortunately, in the last century only part of the genetic diversity available for this species has been captured in modern varieties through breeding. Here, the population structure and genetic diversity shared among elites and landraces collected from 32 countries was investigated. A total of 370 entries were genotyped with Axiom 35K array to identify 8,173 segregating single nucleotide polymorphisms (SNPs). Of these, 500 were selected as highly informative with a PIC value above 0.32 and used to test population structure via DAPC, STRUCTURE, and neighbor joining tree. A total of 10 sub-populations could be identified, six constituted by modern germplasm and four by landraces of different geographical origin. Interestingly, genomic comparison among groups indicated that Middle East and Ethiopia had the lowest level of allelic diversity, while breeding programs and landraces collected outside these regions were the richest in rare alleles. Further, phylogenetic analysis among landraces indicated that Ethiopia might represent a second center of origin of durum wheat, rather than a second domestication site as previously believed. Together, the analyses carried here provide a global picture of the available genetic diversity for this crop and shall guide its targeted use by breeders.
Durum wheat (Triticum durum Desf.) is a major cereal crop grown globally, but its production is often hindered by droughts. Breeding for adapted root system architecture should provide a strategic solution for better capturing moisture. The aim of this research was to adapt low‐cost and high‐throughput methods for phenotyping root architecture and exploring the genetic variability among 25 durum genotypes. Two protocols were used: the “clear pot” for seminal root and the “pasta strainer” to evaluate mature roots. Analysis of variance revealed significant segregation for all measured traits with strong genetic control. Shallow and deep root classes were determined with different methods and then tested in yield trials at five locations with different water regimes. Simple trait measurements did not correlate to any of the traits consistently across field sites. Multitrait classification instead identified significant superiority of deep‐rooted genotypes with 16 to 35% larger grains in environments with limited moisture, but 9 to 24% inferior in the drip irrigated site. Combined multitrait classification identified a 28 to 42% advantage in grain yield for the class with deeper roots at two environments where moisture was limited. Further discrimination revealed that yield advantage of 37 to 38% under low moisture could be achieved by the deepest root types, but that it also caused a 20 to 40% yield penalty in moisture‐rich environments compared with the shallowest root types. In conclusion, the proposed methodologies enable low‐cost and quick characterization of root behavior in durum wheat with significant distinction of agronomic performance.
Heat stress occurring during the reproductive stage of wheat has a detrimental effect on productivity. A durum wheat core set was exposed to simulated terminal heat stress by applying plastic tunnels at the time of flowering over two seasons. Mean grain yield was reduced by 54% compared to control conditions, and grain number was the most critical trait for tolerance to this stress. The combined use of tolerance indices and grain yield identified five top performing elite lines: Kunmiki, Berghouata1, Margherita2, IDON37-141, and Ourgh. The core set was also subjected to genome wide association study using 7652 polymorphic single nucleotide polymorphism (SNPs) markers. The most significant genomic regions were identified in association with spike fertility and tolerance indices on chromosomes 1A, 5B, and 6B. Haplotype analysis on a set of 208 elite lines confirmed that lines that carried the positive allele at all three quantitative trait loci (QTLs) had a yield advantage of 8% when field tested under daily temperatures above 31 • C. Three of the QTLs were successfully validated into Kompetitive Allele Specific PCR (KASP) markers and explained >10% of the phenotypic variation for an independent elite germplasm set. These genomic regions can now be readily deployed via breeding to improve resilience to climate change and increase productivity in heat-stressed areas.
West Nile fever (WNF) or West Nile disease (WND) is a mosquito-borne viral disease that can affect birds, humans and horses. West Nile virus (WNV) is a member of the genus Flavivirus in the family Flaviviridae. WNV is maintained in a mosquito-bird-mosquito transmission cycle, whereas humans and horses are considered dead-end hosts. In human and horses, symptoms range from unapparent infection to mild febrile illness, meningitis, encephalitis or death. WNV has a wide geographical range that includes portions of Europe, Asia, Africa, Australia (Kunjin virus), and in North, Central and South America. Migratory birds are thought to be primarily responsible for virus dispersal, including reintroduction of WNV from endemic areas into regions that experience sporadic outbreaks (Fields Virology, 2001, Lippincott Williams and Wilkins, Philadelphia, Pennsylvania, USA, 1043-1125). The occurrence of disease in humans and animals along with birds and mosquitoes surveillance for WNV activity demonstrates that the virus range has dramatically expanded including North, Central and South America as well as Europe and countries facing the Mediterranean Basin. WND infection in humans has been reported in Morocco in 1996 (Virologie, 1, 1997, 248), in Tunisia in 2007 (Ann. N. Y. Acad., 951, 2001, 117) (Med. Trop., 61, 2001, 487) and 2003 (Epidémiologie de la fièvre West Nile, 2012, Thèse de doctorat, Université Montpellier II, Sciences et techniques du Langueduc, Montpellier, France), and in Algeria in 1994 (Rev. Sci. Tech., 31, 2012, 829). Outbreaks of equine encephalitis have been also reported in Morocco in 1996 (Bull. OIE, 11, 1996, 867), in 2003 (Emerg. Infect. Dis., 11, 2005, 306) and in 2010 (World Animal Health Information Database. WAHID, 2010). Serological evidence of WNV has been demonstrated in the three countries in many species. The aim of this review was to assess the epidemiological situation of WND in north-west Africa comprising Morocco, Algeria and Tunisia, with an updated literature review based on of human cases and equine outbreaks reports as well as serological studies in these countries.
The research is financed by Swedish Research Council (Vetenskapsradet) U-Forsk2013, "Deployment of molecular durum breeding to the Senegal Basin: capacity building to face global warming". AbstractThe Senegal River basin (Guinea, Mali, Mauritania, and Senegal) is a key agricultural production area in sub-Saharan Africa. Here, rice fields are left fallow during the cooler winter season, when the night temperatures reach 16 °C but the maximum daily temperatures remain above 30 °C. This season was used for the first time to conduct multi-environmental trials of durum wheat. Twenty-four elite breeding lines and cultivars were tested for adaptation during seasons 2014-15 and 2015-16 at two stations: Kaedi, Mauritania and Fanaye, Senegal. Phenological traits, grain yield and its components were recorded. Top grain yield was recorded at 5,330 kg ha -1 and the average yield at 2,484 kg ha -1 . The season lasted just 90 days from sowing to harvest. Dissection of the yield in its components revealed that biomass and spike fertility (i.e. number of seeds produced per spike) were the most critical traits for adaptation to these warm conditions. This second trait was confirmed in a validation experiment conducted in 2016-17 at the same two sites. Genotype × environment interaction was dissected by AMMI model, and the derived IPC values used to derive an 'AMMI wide adaptation index' (AWAI) to asses yield stability. The use of a selection index that combined adjusted means of yield and AWAI identified three genotypes as the most stable and high yielding: 'Bani Suef 5', 'DAWRyT118', and 'DAWRyT123'. The last two genotypes were also confirmed among the best in a validation trial conducted in season 2016-17. The data presented here are meant to introduce to the breeding community the use of these two research stations along the Senegal River for assessing heat tolerance of wheat or other winter cereals, as well as presenting two new ideal germplasm sources for heat tolerance, and the identification of spike fertility as the key trait controlling adaptation to heat stress.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.