A new biorefinery approach has been developed in the present study, and applied on cumin (Cuminum cyminum) seeds as a potential source of phytochemicals of interest. Cumin is a popular spice used widely for its distinctive aroma. It is a rich reserve of both vegetable and essential oils. The biorefinery approach here focused on the evaluation of the influence of four different geographical origins (i.e., Lebanon, France, Algeria and Syria) on oil yield and quality in cumin seed, and on the valorization of remaining by-products by investigating their nutritional content and biological activity for the first time. Vegetable and essential oils were extracted, and their compositions were determined. Nutritional traits were also assessed. The delipidated and hydrodistillated cakes just as aromatic water were characterized for their fiber, sugar, protein, phenol and flavonoid contents. Antibacterial and antioxidant activities were also determined. Cumin seeds showed high contents in both vegetable and essential oils, proteins and sugars regardless their origin. Moreover, this Apiaceae species exhibited high levels of petroselinic fatty acid (an isomer of oleic acid) and sterols. Cakes and aromatic water also presented high levels of proteins, fibers, sugars and phenols. These residues revealed interesting antioxidant and antibacterial activities. These results emphasized the potential use of cumin in a biorefinery concept, with a multi-purpose industrial process. In addition, large differences were observed between the four geographical origins for phytochemical contents and compositions. These findings highlight the perspectives for developing selection programs for nutritional traits and industrial interests. All obtained results validate the health promoting effect of cumin composition as well as its industrial importance along with the residues.
The aim of this study was to investigate and compare the effect of wheat bread fortification with varied levels (2%, 4%, and 6%) of chia seed powder (full fat) and cakes (defatted, residue after oil extraction). Chia flour was added to whole wheat bread rich in vital wheat gluten for the first time. The breadcrumbs were assessed for their antioxidant activity, nutritional content, textural properties, color, and sensory profiles. The addition of chia seed powder, particularly in high levels, was more effective in improving antioxidant activity compared to bread fortified with chia cakes. Bread supplementation with chia flour improves its nutritional value, especially in the case of chia cakes. A higher moisture content and lower hardness were observed after bread fortification, the influence was more evident with the defatted cake than with seed powder. Fortification with chia flour led to darker breads without significantly affecting their global acceptability. However, the fortified bread showed better values than control in terms of sensory profile. These results suggest that the addition of chia seed powder and defatted cake can enhance the overall whole wheat bread quality. Our results also highlight that bread making could be an unconventional alternative for the exploitation of defatted chia seed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.