Using frequency splitting, two energy management strategies (EMS) based on Haar wavelet decomposition and Fourier analysis for fuel cell hybrid vehicle (FCHV) are proposed to manage efficiently the power flow between components. The paper aims to discuss the performances of the proposed EMS in terms of dynamic behavior, robustness operation, real time application and fuel economy. For apply this methodology, two EMS approaches are elaborated and successfully tested for parallel Fuel Cell/UC: conventional approach using Fourier Transform analysis (FT) and Wavelet analysis approach allowing natural frequency splitting. Finally, and to evaluate the performance and relevance of the developed approach, a comparison analysis were conducted. The simulation results exhibit the effectiveness of both strategies. Indeed, Wavelet analysis leads to better results in terms of energy flow and dynamic behavior, excellent robustness and stability of system, as well as energy economy improvement. A very relevant strategy is proposed based on Wavelet analysis using digital filtering techniques, which enables a natural frequency splitting to ensure the best global performances. In addition, the approach remains simple and suitable for real time operation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.