This article deals with the problem of Berber handwritten character recognition using Extreme Learning Machine. This paradigm has gained significant attention in pattern recognition field thanks to its efficient learning speed and its high accuracy. In this paper, we have used a fast Extreme Learning Machine to recognize efficiently the Latin Berber characters. So, the proposed ELM has been trained over a Berber-MNIST dataset containing images of Amazigh alphabets. This algorithm learns much faster than traditional popular learning algorithms thanks to the use of JAX library which contains several functions to reduce the execution time of our solution. The simulation results show that the handwritten recognition system based on our developed extreme learning machine decreases computational cost and reduces the time required for the whole recognition process. Furthermore, the developed ELM achieves a high performance in terms of recognition accuracy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.