Abstract. This paper describes the second major release of the Earth System Model Evaluation Tool (ESMValTool), a community diagnostic and performance metrics tool for the evaluation of Earth system models (ESMs) participating in the Coupled Model Intercomparison Project (CMIP). Compared to version 1.0, released in 2016, ESMValTool version 2.0 (v2.0) features a brand new design, with an improved interface and a revised preprocessor. It also features a significantly enhanced diagnostic part that is described in three companion papers. The new version of ESMValTool has been specifically developed to target the increased data volume of CMIP Phase 6 (CMIP6) and the related challenges posed by the analysis and the evaluation of output from multiple high-resolution or complex ESMs. The new version takes advantage of state-of-the-art computational libraries and methods to deploy an efficient and user-friendly data processing. Common operations on the input data (such as regridding or computation of multi-model statistics) are centralized in a highly optimized preprocessor, which allows applying a series of preprocessing functions before diagnostics scripts are applied for in-depth scientific analysis of the model output. Performance tests conducted on a set of standard diagnostics show that the new version is faster than its predecessor by about a factor of 3. The performance can be further improved, up to a factor of more than 30, when the newly introduced task-based parallelization options are used, which enable the efficient exploitation of much larger computing infrastructures. ESMValTool v2.0 also includes a revised and simplified installation procedure, the setting of user-configurable options based on modern language formats, and high code quality standards following the best practices for software development.
Abstract. The Earth System Model Evaluation Tool (ESMValTool) is a community diagnostics and performance metrics tool designed to improve comprehensive and routine evaluation of Earth system models (ESMs) participating in the Coupled Model Intercomparison Project (CMIP). It has undergone rapid development since the first release in 2016 and is now a well-tested tool that provides end-to-end provenance tracking to ensure reproducibility. It consists of (1) an easy-to-install, well-documented Python package providing the core functionalities (ESMValCore) that performs common preprocessing operations and (2) a diagnostic part that includes tailored diagnostics and performance metrics for specific scientific applications. Here we describe large-scale diagnostics of the second major release of the tool that supports the evaluation of ESMs participating in CMIP Phase 6 (CMIP6). ESMValTool v2.0 includes a large collection of diagnostics and performance metrics for atmospheric, oceanic, and terrestrial variables for the mean state, trends, and variability. ESMValTool v2.0 also successfully reproduces figures from the evaluation and projections chapters of the Intergovernmental Panel on Climate Change (IPCC) Fifth Assessment Report (AR5) and incorporates updates from targeted analysis packages, such as the NCAR Climate Variability Diagnostics Package for the evaluation of modes of variability, the Thermodynamic Diagnostic Tool (TheDiaTo) to evaluate the energetics of the climate system, as well as parts of AutoAssess that contains a mix of top–down performance metrics. The tool has been fully integrated into the Earth System Grid Federation (ESGF) infrastructure at the Deutsches Klimarechenzentrum (DKRZ) to provide evaluation results from CMIP6 model simulations shortly after the output is published to the CMIP archive. A result browser has been implemented that enables advanced monitoring of the evaluation results by a broad user community at much faster timescales than what was possible in CMIP5.
Abstract. The Earth System Model Evaluation Tool (ESMValTool) is a community diagnostics and performance metrics tool designed to improve comprehensive and routine evaluation of Earth System Models (ESMs) participating in the Coupled Model Intercomparison Project (CMIP). It has undergone rapid development since the first release in 2016 and is now a well-tested tool that provides end-to-end provenance tracking to ensure reproducibility. It consists of an easy-to-install, well documented Python package providing the core functionalities (ESMValCore) that performs common pre-processing operations and a diagnostic part that includes tailored diagnostics and performance metrics for specific scientific applications. Here we describe large-scale diagnostics of the second major release of the tool that supports the evaluation of ESMs participating in CMIP Phase 6 (CMIP6). ESMValTool v2.0 includes a large collection of diagnostics and performance metrics for atmospheric, oceanic, and terrestrial variables for the mean state, trends, and variability. ESMValTool v2.0 also successfully reproduces figures from the evaluation and projections chapters of the Intergovernmental Panel on Climate Change (IPCC) Fifth Assessment Report (AR5) and incorporates updates from targeted analysis packages, such as the NCAR Climate Variability Diagnostics Package for the evaluation of modes of variability the Thermodynamic Diagnostic Tool (TheDiaTo) to evaluate the energetics of the climate system, as well as parts of AutoAssess that contains a mix of top-down performance metrics. The tool has been fully integrated into the Earth System Grid Federation (ESGF) infrastructure at the Deutsches Klima Rechenzentrum (DKRZ) to provide evaluation results from CMIP6 model simulations shortly after the output is published to the CMIP archive. A result browser has been implemented that enables advanced monitoring of the evaluation results by a broad user community at much faster timescales than what was possible in CMIP5.
Abstract. This paper complements a series of now four publications that document the release of the Earth System Model Evaluation Tool (ESMValTool) v2.0. It describes new diagnostics on the hydrological cycle, extreme events, impact assessment, regional evaluations, and ensemble member selection. The diagnostics are developed by a large community of scientists aiming to facilitate the evaluation and comparison of Earth system models (ESMs) which are participating in the Coupled Model Intercomparison Project (CMIP). The second release of this tool aims to support the evaluation of ESMs participating in CMIP Phase 6 (CMIP6). Furthermore, datasets from other models and observations can be analysed. The diagnostics for the hydrological cycle include several precipitation and drought indices, as well as hydroclimatic intensity and indices from the Expert Team on Climate Change Detection and Indices (ETCCDI). The latter are also used for identification of extreme events, for impact assessment, and to project and characterize the risks and impacts of climate change for natural and socio-economic systems. Further impact assessment diagnostics are included to compute daily temperature ranges and capacity factors for wind and solar energy generation. Regional scales can be analysed with new diagnostics implemented for selected regions and stochastic downscaling. ESMValTool v2.0 also includes diagnostics to analyse large multi-model ensembles including grouping and selecting ensemble members by user-specified criteria. Here, we present examples for their capabilities based on the well-established CMIP Phase 5 (CMIP5) dataset.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.