The valves of an internal combustion engine play an essential role in the automobiles and their surroundings significantly affect their thermo-mechanical behavior. The work aims to assess numerically the effect of the real thermo-mechanical boundary conditions on the valves by considering the actual complex surrounding. For this purpose, we have subdivided the valve into seven adequate zones. We have evaluated the average values of the transient heat transfer coefficient, the adiabatic wall temperature and the mechanical load at each subdivision are during the opening and the closing periods. A transient Finite Element Model under ANSYS APDL software is developed and simulations are carried out until reaching the steady state. The temperature distribution and the thermal stresses at each valve position is obtained and then analyzed. The main findings show that the stress intensity distribution is developed in the zones labelled stem guide port and seat local of large temperature gradients, which causes high thermal stresses responsible of cracks or thermal fatigue damage. In addition, knowing the temperature map, the thermal gradient and stress under actual conditions will surely help manufacturers to better design exhaust valve, avoid early failure and enhance the durability of valves.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.