Firmness is a valid and widely acknowledged indication of fruit quality that is directly connected to physical structure and mechanical qualities. The deformation signals of kiwifruit for firmness assessment were acquired using an assessment system based on airflow and laser technology in this investigation. Using partial least squares regression (PLSR), genetic algorithm optimization of bp neural network (GA-BP), and an extreme learning machine (ELM), deformation data from kiwifruit was used to create models of Magness-Taylor penetration firmness prediction. The ELM model outperformed the PLSR model, and GA-BP model in the prediction set, with a correlation coefficient of 0.876 and a root mean squared error of 3.576 N in the prediction set. These findings showed that an assessment system based on airflow and laser techniques can be utilized to assess the firmness of kiwifruit quickly and nondestructively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.