Transmembrane proteins (TMPs) play vital and diverse roles in many biological processes, such as molecular transportation and immune response. Like other proteins, many major interactions with other molecules happen in TMPs' surface area, which is important for function annotation and drug discovery. Under the condition that the structure of TMP is hard to derive from experiment and prediction, it is a practical way to predict the TMP residues' surface area, measured by the relative accessible surface area (rASA), based on computational methods. In this study, we presented a novel deep learning-based predictor TMP-SSurface for both alpha-helical and beta-barrel transmembrane proteins (α-TMP and β-TMP), where convolutional neural network (CNN), inception blocks, and CapsuleNet were combined to construct a network framework, simply accepting one-hot code and position-specific score matrix (PSSM) of protein fragment as inputs. TMP-SSurface was tested against an independent dataset achieving appreciable performance with 0.584 Pearson correlation coefficients (CC) value. As the first TMP's rASA predictor utilizing the deep neural network, our method provided a referenceable sample for the community, as well as a practical step to discover the interaction sites of TMPs based on their sequence.
We introduce a new method for storing, modeling, and analyzing power grid data. First, we present an architecture for building the network model for a power grid using the open source graph database Neo4j. Second, we design single-and multi-threading systems for initial energization analysis of the power grid network. We design the shortest path search function and conditional search function based on Neo4j. Finally, we compare the functionality and efficiency of our graph database with a traditional relational database in system initial energization analysis and the shortest path function problems on small to large data sets. The results demonstrate the efficiency and effectiveness of topology modeling and analysis using graph database for a power grid network.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.