Characterizing the kinematics of seismic waves in elastic vertical transversely isotropic (VTI) media involves four independent parameters. To reduce the complexity, the acoustic approximation for P-waves reduces the number of required parameters to three by setting the vertical S-wave velocity to zero. However, since only the SV-wave phase velocities parallel or perpendicular to the symmetry axis are indirectly set to zero, the acoustic approximation leads to coupled P-wave components and SV-wave artifacts. The new acoustic approximation suggests setting the vertical S-wave velocity as a phase angle-dependent variable so that the SV-wave phase velocity is zero at all phase angles. We find that manipulating this parameter is a valid way for P-wave approximation, but doing so inevitably leads to zero- or non-zero-valued spurious SV-wave components. Thus, we have developed a novel approach to efficiently approximate and thoroughly separate the two wave modes in VTI media. First, the exact P- and SV-wave phase velocity expressions are rewritten by introducing an auxiliary function. After confirming the insensitivity of this function, we construct a new expression for it and obtain simplified P- and SV-wave phase velocity expressions, which are three- and four-parameter, respectively. This approximation process leads to the same reasonable error for both wave modes. Accuracy analysis indicates that for the P-wave, the overall accuracy performance of our approach is comparable to that of some existing three-parameter approximations. We then derive the corresponding P- and SV-wave equations in tilted transversely isotropic (TTI) media and provide two available solutions, the hybrid finite-difference/pseudo-spectral scheme and the low-rank approach. Numerical examples illustrate the separability and high accuracy of the proposed P- and SV-wave simulation methods in TTI media.
Characterizing the kinematics of seismic waves in elastic orthorhombic media involves nine independent parameters. All wave modes, P-, S1-, and S2-waves, are intrinsically coupled. Since the P-wave propagation in orthorhombic media is weakly dependent on the three S-wave velocity parameters, they are set to zero under the acoustic assumption. The number of parameters required for the corresponding acoustic wave equation is thus reduced from nine to six, which is very practical for the inversion algorithm. However, the acoustic wavefields generated by the finite-difference scheme suffer from two types of S-wave artifacts, which may result in noticeable numerical dispersion and even instability issues. Avoiding such artifacts requires a class of spectral methods based on the low-rank decomposition. To implement a six-parameter pure P-wave approximation in orthorhombic media, we develop a novel phase velocity approximation approach from the perspective of decoupling P- and S-waves. In the exact P-wave phase velocity expression, we find that the two algebraic expressions related to the S1- and S2-wave phase velocities play a negligible role. After replacing these two algebraic expressions with the designed constant and variable respectively, the exact P-wave phase velocity expression is greatly simplified and naturally decoupled from the characteristic equation. Similarly, the number of required parameters is reduced from nine to six. We also derive an approximate S-wave phase velocity equation, which supports the coupled S1- and S2-waves and involves nine independent parameters. Error analyses based on several orthorhombic models confirm the reasonable and stable accuracy performance of the proposed phase velocity approximation. We further derive the approximate dispersion relations for the P-wave and the S-wave system in orthorhombic media. Numerical experiments demonstrate that the corresponding P- and S-wavefields are free of artifacts and exhibit good accuracy and stability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.