Dempster–Shafer evidence theory is widely applied in various fields related to information fusion. However, how to avoid the counter-intuitive results is an open issue when combining highly conflicting pieces of evidence. In order to handle such a problem, a weighted combination method for conflicting pieces of evidence in multi-sensor data fusion is proposed by considering both the interplay between the pieces of evidence and the impacts of the pieces of evidence themselves. First, the degree of credibility of the evidence is determined on the basis of the modified cosine similarity measure of basic probability assignment. Then, the degree of credibility of the evidence is adjusted by leveraging the belief entropy function to measure the information volume of the evidence. Finally, the final weight of each piece of evidence generated from the above steps is obtained and adopted to modify the bodies of evidence before using Dempster’s combination rule. A numerical example is provided to illustrate that the proposed method is reasonable and efficient in handling the conflicting pieces of evidence. In addition, applications in data classification and motor rotor fault diagnosis validate the practicability of the proposed method with better accuracy.
Dempster-Shafer evidence theory (D-S) is an effective instrument for merging the collected pieces of basic probability assignment (BPA), and it exhibits superiority in achieving robustness of soft computing and decision making in an uncertain and imprecise environment. However, the determination of BPA is still uncertain, and merely applying evidence theory can sometimes lead to counterintuitive results when lines of evidence conflict. In this paper, a novel BPA generation method for binary problems called the base algorithm is designed based on the kernel density estimation to construct probability density function models, using the pairwise learning
Due to its efficiency to handle uncertain information, Dempster-Shafer evidence theory has become the most important tool in many information fusion systems. However, how to determine basic probability assignment, which is the first step in evidence theory, is still an open issue. In this article, a new method integrating interval number theory and k-means++ cluster method is proposed to determine basic probability assignment. At first, k-means++ clustering method is used to calculate lower and upper bound values of interval number with training data. Then, the differentiation degree based on distance and similarity of interval number between the test sample and constructed models are defined to generate basic probability assignment. Finally, Dempster's combination rule is used to combine multiple basic probability assignments to get the final basic probability assignment. The experiments on Iris data set that is widely used in classification problem illustrated that the proposed method is effective in determining basic probability assignment and classification problem, and the proposed method shows more accurate results in which the classification accuracy reaches 96.7%.
Granular computing (GrC) is an essential tool to solve human real problem since the information granules is close to human perception schemes. In GrC, both classification accuracy and interpretability play significant roles. Fuzzy rule (FR) based classification systems are effective methods solving this problem. However, the accuracy of FR may be decreased when solving some complex application. In this paper, a novel model called FR-KDE integrating the FR and kernel density estimation (KDE) in the framework of Dempster-Shafer evidence theory is proposed to deal with the classification problem. By fusing the result of FR and KDE via the Dempster's combination rule, it can reduce the uncertainty of FR and obtain better accuracy. To illustrate the effect of the FR-KDE approach, it is applied to the medical data classification problem. Experimentally, the results demonstrate that the FR-KDE method is effective in handling biomedical data classification problems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.