With the rapid growth and development of proton exchange membrane fuel cell (PEMFC) technology there has been an increasing demand for clean and sustainable global energy applications.While there are many device-level and infrastructure challenges still to be overcome before wide commercialization can be realized, increasing the PEMFC power density is a critical technical challenge, with ambitious goals proposed globally. For example, the short-term and long-term goals of the Japan New Energy and Industrial Technology Development Organization (NEDO) are 6 kW L -1 by 2030 and 9 kW L -1 by 2040, respectively. To this end, we propose technical development directions required for next-generation high power density PEMFCs. This perspective comprehensively embraces the latest advanced ideas for improvements in the membrane electrode assembly (MEA) and its components, bipolar plate (BP), integrated BP-MEA design, with regard to water and thermal management, and materials. The realization of these ideas is expected to be encompassed in next-generation PEMFCs with the aim of achieving a high power density.
Elucidating the pathways that lead to vasculogenic cells, and being able to identify their progenitors and lineage-restricted cells, is critical to the establishment of human pluripotent stem cell (hPSC) models for vascular diseases and development of vascular therapies. Here, we find that mesoderm-derived pericytes (PCs) and smooth muscle cells (SMCs) originate from a clonal mesenchymal progenitor mesenchymoangioblast (MB). In clonogenic cultures, MBs differentiate into primitive PDGFRβCD271CD73 mesenchymal progenitors, which give rise to proliferative PCs, SMCs, and mesenchymal stem/stromal cells. MB-derived PCs can be further specified to CD274 capillary and DLK1 arteriolar PCs with a proinflammatory and contractile phenotype, respectively. SMC maturation was induced using a MEK inhibitor. Establishing the vasculogenic lineage tree, along with identification of stage- and lineage-specific markers, provides a platform for interrogating the molecular mechanisms that regulate vasculogenic cell specification and diversification and manufacturing well-defined mural cell populations for vascular engineering and cellular therapies from hPSCs.
Background: Since December 2019, 2019 novel coronavirus pneumonia emerged in Wuhan city and rapidly spread throughout China and even the world. We sought to analyse the clinical characteristics and laboratory findings of some cases with 2019 novel coronavirus pneumonia .Methods: In this retrospective study, we extracted the data on 95 patients with laboratory-confirmed 2019 novel coronavirus pneumonia in Wuhan Xinzhou District People's Hospital from January 16th to February 25th , 2020. Cases were confirmed by real-time RT-PCR and abnormal radiologic findings. Outcomes were followed up until March 2th , 2020. Results: Higher temperature, blood leukocyte count, neutrophil count, neutrophil percentage, C-reactive protein level, D-dimer level, alanine aminotransferase activity, aspartate aminotransferase activity, α - hydroxybutyrate dehydrogenase activity, lactate dehydrogenase activity and creatine kinase activity were related to severe 2019 novel coronavirus pneumonia and composite endpoint, and so were lower lymphocyte count, lymphocyte percentage and total protein level. Age below 40 or above 60 years old, male, higher Creatinine level, and lower platelet count also seemed related to severe 2019 novel coronavirus pneumonia and composite endpoint, however the P values were greater than 0.05, which mean under the same condition studies of larger samples are needed in the future. Conclusion: Multiple factors were related to severe 2019 novel coronavirus pneumonia and composite endpoint, and more related studies are needed in the future.
Protein glycosylation, one of the most heterogeneous post-translational modifications, can play a major role in cellular signal transduction and disease progression. Traditional mass spectrometry (MS)-based large-scale glycoprotein sequencing studies heavily rely on identifying enzymatically released glycans and their original peptide backbone separately, as there is no efficient fragmentation method to produce unbiased glycan and peptide product ions simultaneously in a single spectrum and can be conveniently applied to high throughput glycoproteome characterization, especially for N-glycopeptides which can have much more branched glycan side chains than relatively less complex O-linked glycans. In this study a re-defined electron-transfer/higher-energy collision dissociation (EThcD) fragmentation scheme is applied to incorporate both glycan and peptide fragments in one single spectrum, enabling complete information to be gathered and great microheterogeneity details to be revealed. Fetuin was first utilized to prove the applicability with 19 glycopeptides and corresponding 5 glycosylation sites identified. Subsequent experiments tested its utility for human plasma N-glycoproteins. Large-scale studies explored N-glycoproteomics in rat carotid over the course of restenosis progression to investigate potential role of glycosylation. The integrated fragmentation scheme provides a powerful tool for the analysis of intact N-glycopeptides and N-glycoproteomics. We also anticipate this approach can be readily applied to large-scale O-glycoproteome characterization.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.