Imprinting nanopatterns on flexible substrates has diverse applications in advanced fabrication. However, the traditional thermal nanoimprint lithography (T‐NIL) often causes shrinkage upon cooling. Here, a simple yet versatile method is introduced to fabricate multiple nanopatterns on a flexible substrate coated with an azopolymer by combining athermal nanoimprint lithography (AT‐NIL) and photolithography. The azopolymer has various mechanical properties upon photoirradiation: 1) phototunable glass‐transition temperatures (Tg) and concomitantly photoinduced switch from glassy plastic to viscoplastic polymer; 2) prominent modulation of viscoplasticity under light illumination at different wavelengths. Regionally selective multiple nanopatterns are conveniently fabricated, presenting angle‐dependent structural color images on poly(ethylene terephthalate) (PET) substrates. The flexible, athermal and multiple nanopatterning method has the potential for on‐demand fabrication of complex nanopatterns.
This article reports a novel type of polymeric microspheres derived from a renewable biomass, eugenol, via a facile and effective suspension polymerization approach. On the basis of eugenol and methacryloyl chloride, we first synthesized and then structurally identified the monomer eugenyl methacrylate (E-MA). By using E-MA as the sole monomer and simultaneously as the cross-linking agent, we successfully prepared cross-linked polymeric microspheres through suspension polymerization in aqueous media with 2,2-azoisobutyronitrile (AIBN) as the initiator and poly(vinyl alcohol) (PVA) as the stabilizer. The resulting microspheres were obtained in high yield with diameters ranging 500−800 μm and exhibited remarkably large oil absorbency in a relatively high speed. The microspheres can be reused for at least five times with little change in maximum absorption. The preparative strategy for the polymeric microspheres can be taken as a versatile platform for preparing more functional polymeric microspheres, which are expected to find significant applications in environmental protection and other fields.
This paper presents a simultaneous microscopic structure characteristic of shape-memory (SM) poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) inverse opals together with a bulk PVDF-HFP by scanning electron microscopy (SEM). The materials show a thermo-sensitive micro-SM property, accompanied with a reversible and modulated optical property. The introduction of the inverse opal structure into the shape-memory polymer material renders a recognition ability of the microstructure change aroused from complex environmental signals by an optical signal, which can be simultaneously detected by SEM. Furthermore, this feature was applied as a reversible write/erase of fingerprint pattern through the press-stimulus and solvent-induced effect, together with the changes of morphology/optical signal. This micro-SM property can be attributed to the shrink/swell effect of the polymer chain from external stimuli combined with the microscopic structure of inverse opals. It will trigger a promising way toward designing reversible micro-deformed actuators.
Human skin is a remarkable example of a biological material that displays unique mechanical characters of both soft elasticity and stretchability. However, mimicking these features has been absent in photoresponsive soft matters. Here, we present one synthetic ABA-type triblock copolymer consisting of polystyrene as end blocks and one photoresponsive azopolymer as the middle block, which is stiffness at room temperature and shows a phototunable transition to soft elastics athermally. We have synthesized an elastics we term “photoinduced soft elastomer,” where the photo-evocable soft midblock of azopolymer and the glassy polystyrene domains act as elastic matrix and physical cross-linking junctions, respectively. On the basis of the photoswitchable transformation between stiffness and elasticity at room temperature, we demonstrated precise control over nanopatterns on nonplanar substrates especially adaptable in the human skin and fabrication of packaged perovskite solar cells, enabling the simple, human-friendly, and controllable approach to be promising for mechanically adaptable soft photonic and electronic packaging applications.
Light-activated self-oscillators have drawn enormous attention for their potential applications in mobile machines, energy harvesting, signal modulation, etc. Herein, we report one graphene oxide (GO)/liquid crystalline network (LCN) actuator that presents a unique light-activated oscillation with amplitude and frequency superposition. The GO/LCN composite film is prepared by the one-step polymerization of LC monomers, which favors a splay orientation in LC cells made by gluing together two glass sheets, one coated with photothermal agent GO and the other coated with a rubbed polyimide alignment layer. Owing to the asymmetric contraction/expansion, changing the cutting direction gives rise to notably different actuation behaviors for GO/LCN composite films. Moreover, it twists a little during the deflection process as a result of experimental error during the cutting process, which may cause the strip to be cut inaccurately. When the composite film is embedded in a self-shadowing system, it produces an unconventional hybrid oscillation mode upon near-infrared light irradiation, i.e., bending and twisting oscillation coupled. Furthermore, when the aspect ratio of the film decreases, the twisting mode is suppressed and the actuator changes from a coupled mode to a single bending mode. The proposed strategy may extend the application of GO/LCN composite materials and enrich light-activated self-oscillating behaviors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.