The determination of the atomic-scale structure of a solid–solid interface is a major outstanding problem in the physical sciences, the structure controlling many properties including stability, ionic and electronic transport, magnetism, multiferroicity and superconductivity. NMR spectroscopy is sensitive to local structure but is not typically sufficiently sensitive or selective to observe solid–solid interfaces. In this work, CeO<sub>2</sub>–SrTiO<sub>3</sub> vertically aligned nanocomposite (VAN) thin films are studied and, by combining selective isotopic enrichment with a lift-off technique to remove the substrate, the <sup>17</sup>O NMR signal from single atomic layer interfaces can clearly be seen. The interfacial structure is solved by calculating the NMR parameters using density functional theory combined with random structure searching. By performing the isotopic enrichment at variable temperatures, the superior oxide-ion conductivity of the VAN films compared to the bulk materials is shown to arise in part from enhanced oxygen mobility at this interface; oxygen motion at the interface is further identified from <sup>17</sup>O relaxometry experiments. These results highlight the information that can be obtained on interfacial structure and dynamics with solid-state NMR spectroscopy, in this and other nanostructured systems, our methodology being generally applicable to overcome sensitivity limitations in thin-film studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.