The wide variety of crops in the image of agricultural products and the confusion with the surrounding environment information makes it difficult for traditional methods to extract crops accurately and efficiently. In this paper, an automatic extraction algorithm is proposed for crop images based on Mask RCNN. First, the Fruits 360 Dataset label is set with Labelme. Then, the Fruits 360 Dataset is preprocessed. Next, the data are divided into a training set and a test set. Additionally, an improved Mask RCNN network model structure is established using the PyTorch 1.8.1 deep learning framework, and path aggregation and features are added to the network design enhanced functions, optimized region extraction network, and feature pyramid network. The spatial information of the feature map is saved by the bilinear interpolation method in ROIAlign. Finally, the edge accuracy of the segmentation mask is further improved by adding a micro-fully connected layer to the mask branch of the ROI output, employing the Sobel operator to predict the target edge, and adding the edge loss to the loss function. Compared with FCN and Mask RCNN and other image extraction algorithms, the experimental results demonstrate that the improved Mask RCNN algorithm proposed in this paper is better in the precision, Recall, Average precision, Mean Average Precision, and F1 scores of crop image extraction results.
Abstract-Security attacks may have disruptive consequences on cyber-physical systems, and lead to significant social and economic losses. Building secure cyber-physical systems is particularly challenging due to the variety of attack surfaces from the cyber and physical components, and often to limited computation and communication resources. In this paper, we propose a crosslayer design framework for resource-constrained cyber-physical systems. The framework combines control-theoretic methods at the functional layer and cybersecurity techniques at the embedded platform layer, and addresses security together with other design metrics such as control performance under resource and real-time constraints. We use the concept of interface variables to capture the interactions between control and platform layers, and quantitatively model the relation among system security, performance, and schedulability via interface variables. The general codesign framework is customized and refined to the automotive domain, and its effectiveness is demonstrated through an industrial case study and a set of synthetic examples.
As a classic and effective edge detection operator, the Sobel operator has been widely used in image segmentation and other image processing technologies. This operator has obvious advantages in the speed of extracting the edge of images, but it also has the disadvantage that the detection effect is not ideal when the image contains noise. In order to solve this problem, this paper proposes an optimized scheme for edge detection. In this scheme, the weighted nuclear norm minimization (WNNM) image denoising algorithm is combined with the Sobel edge detection algorithm, and the excellent denoising performance of the WNNM algorithm in a noise environment is utilized to improve the anti-noise performance of the Sobel operator. The experimental results show that the optimization algorithm can obtain better detection results when processing noisy images, and the advantages of the algorithm become more obvious with the increase of noise intensity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.