Traditional text steganalysis methods rely on a large amount of labeled data. At the same time, the test data should be independent and identically distributed with the training data. However, in practice, a large number of text types make it difficult to satisfy the i.i.d condition between the training set and the test set, which leads to the problem of domain mismatch and significantly reduces the detection performance. In this paper, we draw on the ideas of domain adaptation and transductive learning to design a novel text steganalysis method. In this method, we design a distributed adaptation layer and adopt three loss functions to achieve domain adaptation, so that the model can learn the domaininvariant text features. The experimental results show that the method has better steganalysis performance in the case of domain mismatch.
CCS CONCEPTS• Security and privacy → Human and societal aspects of security and privacy; • Computing methodologies → Natural language processing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.