We study uniformly elliptic fully nonlinear equations of the type F (D 2 u, Du, u, x) = f (x). We show that convex positively 1-homogeneous operators possess two principal eigenvalues and eigenfunctions, and study these objects; we obtain existence and uniqueness results for nonproper operators whose principal eigenvalues (in some cases, only one of them) are positive; finally, we obtain an existence result for nonproper Isaac's equations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.