We describe an efficient ruthenium‐catalyzed oxidation of the β,β′‐pyrrolic ring on the porphyrin periphery. Through the conversion of a β,β′‐double bond to a lactone moiety, the direct preparation of porpholactones from porphyrins is achieved, which previously suffered from needing toxic reagents, multiple synthetic steps and low yields. The generality of this method has been investigated with various porphyrins with different electronic and steric effects, even some metalloporphyrins, and so represents a general and efficient approach for the synthesis of the intriguing porpholactone derivatives.
The near-infrared (NIR) luminescence efficiency of lanthanide complexes is largely dependent on the electronic and photophysical properties of antenna ligands. Although porphyrin ligands are efficient sensitizers of lanthanide NIR luminescence, non-pyrrolic porphyrin analogues, which have unusual symmetry and electronic states, have been much less studied. In this work, we used porpholactones, a class of β-pyrrolic-modified porphyrins, as ligands and investigated the photophysical properties of lanthanide porpholactones Yb-1 a-5 a. Compared with Yb porphyrin complexes, the porpholactone complexes displayed remarkable enhancement of NIR emission (50-120 %). Estimating the triplet-state levels of porphyrin and porpholactone in Gd complexes revealed that β-lactonization of porphyrinic ligands lowers the ligand T1 state and results in a narrow energy gap between this state and the lowest excited state of Yb(3+) . Transient absorption spectra showed that Yb(III) porpholactone has a longer transient decay lifetime at the Soret band than the porphyrin analogue (30.8 versus 17.0 μs). Thus, the narrower energy gap and longer lifetime arising from β-lactonization are assumed to enhance NIR emission of Yb porpholactones. To demonstrate the potential applications of Yb porpholactone, a water-soluble Yb bioprobe was constructed by conjugating glucose to Yb-1 a. Interestingly, the NIR emission of this Yb porpholactone could be specifically switched on in the presence of glucose oxidase and then switched off by addition of glucose. This is the first demonstration that non-pyrrolic porphyrin ligands enhance the sensitization efficiency of lanthanide luminescence and also display switchable NIR emission in the region of biological analytes (800-1400 nm).
We have firstly demonstrated the dual facet of gold(III) in the reaction between gold(III) and porphyrins, which could be tuned through changing the counter ions, ligands and the electronic effect of the substituents of the porphyrins.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.